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Preface

This dissertation presents two algorithms that extract parameters which are
important to speech processing in high levels of noise. The first algorithm
determines whether a signal containing noise corrupted human speech is
voiced or not and estimates the fundamental frequency (pitch) of voiced
speech. The second algorithm produces an estimate of the additive noise
which is corrupting the speech.

Previous research related to the voicing decision and pitch estimation
has been concentrated at signal-to-noise ratios (SNRs) above 0 dB. Con-
sequently, speech processing requiring the extraction of these parameters
in higher levels of noise could not be performed with much success. The
research presented in this dissertation concentrates on SNRs around and
below 0 dB. Although the algorithm, based on the autocorrelation function,
is designed to work well for high levels of noise, good results for the no noise
case have been maintained. The idea of a confidence measure for parameter
estimation is introduced. Confidence measures are defined and developed
for both the voicing decision and the pitch estimation algorithms.

Estimation of noise that is corrupting a speech signal has been moti-

vated by the need to enhance the corrupted speech. Previous research has



concentrated on speech which is band limited to about 3500 Hz. Therefore,
the estimation of the noise corrupting high frequency speech had not been
considered. The noise estimation algorithm presented in this dissertation
considers the effects of high frequency speech on the noise estimate in ad-
dition to the effects of low frequency speech. A new spectral averaging
method is introduced which significantly reduces the corrupting effect of
the speech components on the noise estimate for SNRs above 0 dB. The
algorithm is tested for stationary white noise, stationary non-white noise,

and non-stationary white noise.
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Chapter 1

Introduction

The production and analysis of human speech sounds are covered in a va-
riety of general texts [1], [2]. The purpose of this chapter is to introduce
terms and concepts that are relevant to the research presented in this dis-
sertation.
Speech is a concatenation of fundamental speech sounds called phonemes.

In written form, phonemes are identified as occurring between two slashes
[2]. For example, the word “sea” is formed using two phonemes. The first
phoneme is /s/. During the production of the /8/ sound, the vocal cords
are not vibrating so the phoneme is classified as unvoiced. It is further
classified as a fricative because there is a constriction in the vocal tract
through which rushing air causes a turbulent sound. The second phoneme
is labeled as /i/. The vocal cords are vibrating during the production of

/i/ so it is classified as a voiced phoneme. The fundamental frequency at

13



Chapter 1 Introduction 14

which the vocal cords are vibrating is called the pitch.

To digitally process speech sounds, the acoustic wave is converted to
digital form using a microphone and an analog-to-digital (A/D) converter.
In this form, a computer can process the speech in any way a programmer
chooses. The processing may be for speaker identification or verification (2],
speech recognition for voice operated machinery [2], or analysis of voice dis-
orders [3]. Since the speech may be reconstructed using a digital-to-analog
(D/A) converter and a speaker, processing may include speech compression
for bit rate reduction in transmission and storage [4], speech enhancement
of a corrupted signal [4], or voice disguising. The speech may eveﬂ be syn-
thesized from a typed text for the blind [2], or from statistics in a database
for telephone access [2].

For most speech analysis or processing, voicing is an important param-
eter which needs to be extracted from the digital signal {2]. The voicing de-
cision answers the question “Is the speech voiced or not?” The exact point
in time where a transition occurs is often difficult to determine because of
coarticulation effects, that is the sound of one phoneme overlapping an-
other during the production of speech. The decision becomes more difficult
when noise is corrupting the speech' signal. Such a decision needs to be
made when the goal of processing is to enhance noise corrupted speech.

Pitch is another parameter important to speech processing. Pitch is
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often used to distinguish a question from a statement. Pitch can convey
information about the emotional state of the speaker such as anger or joy
[5]. Estimation of the formants (resonant frequencies of the vocal tract)
[6], background noise estimation (7}, and LPC analysis (2] may require an
estimate of the pitch while glottal wave estimation [2] and comb filtering
[4] are possible only if the pitch is available.

Speech enhancement provides the main motivation for the research pre-
sented in this dissertation. A speech enhancement system requiring a voic-
ing decision, a pitch estimate, and an estimate of the noise is outlined in
Figure 1.1. This algorithm is based on the assumption that intelligibility
enhancement can be achieved by making use of information directly related

to speech intelligibility [8]. Each estimated parameter is a function of time.

The first block represents the estimation of the pitch and the voicing
decision. The pitch estimate is given as Fy. The variable & is defined as
the pitch confidence and indicates a probabilistic deviation of the pitch.
The voicing decision is made in a continuous fashion using the variable é,.
The magnitude of ¢, gives an indication of the confidence of the voicing
decision.

The second block represents the estimation of the spectrum of the noise
which is corrupting the speech. This estimate is a function of frequency as

well as time. The third block represents the estimation of the first three
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formants of voiced speech. Each formant has an associated confidence. The
algorithm designated by the final block uses the extracted parameters and
processes the speech plus noise signal resulting in what is hoped to be a
more intelligible speech signal.

The upper two blocks in Figure 1.1 are the subject of the research in this
dissertation. The “formant estimation” and “speech processing” blocks are
the subjects of related research by other members of the speech and signal

processing group at Marquette University [8], (9], [10], 11], [12].



Chapter 2

An Autocorrelation Pitch
Detector and Voicing Decision
with Confidence Measures
Developed for
Noise-Corrupted Speech

This chapter describes an integrated speech feature extraction method [13]
consisting of 1) a pitch detector, 2) a voicing decision (V/U), 3) a confidence
measure which reflects the probabilistic accuracy of the voicing decision, 4)
a confidence measure which reflects the expected deviation of the pitch es-
timate from the true pitch and the probabilistic accuracy of this deviation,
and 5) smoothing techniques for the pitch detector, the voicing decision,
and the two confidence measures. The focus of this research is for voiced
and unvoiced speech corrupted by high levels of white noise. The voic-

ing decision and the confidence measures were developed by observing the

18



2.1 Introduction 19

behavior of three features derived from the autocorrelation function and
experimentally fitting curves to the data. This integrated set of algorithms

is statistically analyzed for speech at seven signal-to-noise ratios (SNRs).

2.1 Introduction

It is frequently necessary to know whether a segment of speech under anal-
ysis is voiced or not. If the segment is voiced, the fundamental frequency
(pitch) is an important parameter. The extraction of the pitch and voicing
decision becomes significantly more complicated in the presence of noise.
The goal of the research presented in this chapter is to extract these param-
eters for application to intelligibility enhancement of speech corrupted by
high levels of additive broadband noise. It is intended that the confidence
measures will be used to determine the degree to which the pitch estimate
and voicing decision will be used.

A variety of methods have been proposed for pitch determination and
the voicing decision. Pitch determination can be carried out in the time
domain [14], [15], [16], [17], (18], the frequency domain [19], (20}, [21] [22],
or using a combination of both (23], (24]. A comparison of some of these
methods is available [25]. In earlier work (14), [15], [16], [17], (23], [24], the
voicing decision is a direct result of pitch determination. Atal and Rabiner

[26] propose that such methods may be inadequate for making the voicing
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decision. Later work [22], [26], [27], [28], [29] includes additional decision
parameters and the resultant voicing algorithms are independent of the
pitch detector. Adaptive techniques [30] have also been applied.

In addition to the voicing decision, algorithms for silence [26], [28] and
mixed [29] excitation decisions have been developed. Since the work pre-
sented in this chapter is concerned with noise contaminated speech, only
voiced and unvoiced classifications are made. As noise is added, silence
segments tend to appear unvoiced and voiced segments tend to appear
mixed. In high levels of noise, weak voiced segments may even appear to
be unvoiced. These important facts are discussed later in this chapter.

The purpose of a voicing decision is to correctly partition speech into
voiced and unvoiced intervals. The algorithm described in this chapter uses
smoothing to correct isolated errors. Consequently, it may occasionally
classify V-U-V and U-V-U sequences incorrectly. This concern has been
expressed in [26] and [27]. However, it has not been shown to adversely
affect intelligibility enhancement of speech in noise.

The voicing decision has previously been madé in a continuous fashion
[31]. The application is for speech coding and the “pitch gain” controls the
mixture of the pulse and noise sources. The resulting speech has increased
in quality and intelligibility relative to the conventional LPC system es-

pecially when the speech is corrupted by background noise. For the work
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presented in this chapter, the voicing decision is also made in a continuous
fashion. Rather than controlling a mixture for resynthesis, the voicing con-
fidence will reflect a certainty with which the voicing decision is made. The
motivation is for intelligibility enhancement rather than relative improve-
ment over a conventional coding method.

An attempt has been made to minimize the computation required by
the method so that it has application in real-time systems. The pitch
detector is based on an autocorrelation algorithm found to work well in
white noise [32]. The voicing decision and the confidence measures are
based on three autocorrelation features that were found robust in noise.
The voicing decision makes use of fixed discrimination analysis optimized
over a range of signal-to-noise ratios (SNRs) from no noise (oo dB 1) to —18
dB. Tt is optimized in the sense that the critical boundary (Section 2.2.3)
is chosen so that the number of voicing errors at 0 dB SNR is a min'imum.
Voicing decisions for the transitions between sound categories have the
greatest chance of being incorrect. In fact, a correct decision category for
transition regions may not be possible to determine even under the best
of conditions. In the method presented here, this is taken into account

through the calculation of a confidence measure to reflect the probability

1The term “oo dB” as used in this chapter implies that no noise was added to the
database utterances. The SNR of the database is roughly 45 dB.
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that the voicing decision is correct. Similarly, the pitch estimation will
have inaccuracies. Thus, a probabilistic measure, the pitch confidence, is
developed to reflect the probable accuracy of the pitch detector. The voicing
confidence and pitch confidence are derived independently, but make use
of the same autocorrelation features. The four integrated algorithms and
their associated smoothing techniques have been quantitatively evaluated
for seven SNRs. Results are presented in this chapter.

The method was developed using several speech utterances. To ensure
that the thresholds and parameters implemented in the method are appro-
priate, it was tested with a “test” database which consists of an entirely
different set of utterances than the “development” database. The results
of the test database are presented in Section 2.3.

The method has been designed for situations where the speech signal
below 600 Hz is not significantly distorted and the added noise is broad-
band. The current implementation has been designed as part of a speech
in noise enhancement system which easily meets these criteria [8]. The
method is also applicable to other practical situations (for example speech
feature extraction and speech recognition) where noise corrupted speech is
to be processed. The method is not intended for band limited communi-
cation channels, impulse noise, or sinusoidal noise which do not meet the

specific criteria appropriate for the intended application. A block diagram
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of the overall method presented in this chapter is given in Figure 2.1. Note

that the voicing decision is encoded with the voicing confidence measure.

2.2 Details of the Method

The speech to be analyzed is lowpass filtered with a 6 pole Butterworth
filter having a cutofl frequency of 8 kHz and sampled with a 10 bit analog-
to-digital converter at a rate of 20 kHz. The (development) database is
comprised of 6 speakers, 3 male and 3 female, each speaking 5 sentences.
A more complete description of the database is available [22]. Gaussian
noise was computer generated [33] to be white to 10 kHz and added to
the sampled speech at the appropriate SNR. Each utterance has about a
quarter second of silence before and after the speech. The SNR, calculated
only over the speech, is determined as ten times the common logarithm of

the mean square level of speech to the mean square level of noise.
2.2.1 Pitch Detector

The pitch detector is based on an autocorrelation algorithm described in
an earlier paper [32]. The speech is lowpass filtered with a 6 pole Butter-
worth filter having a cutoff frequency of 600 Hz as suggested by Gold and
Rabiner {15]. For speed in calculation, the speech is decimated to 10 kHz as

shown in Figure 2.1. (Further decimation, for example to 5 kllz, begins to
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2.2.1 Pitch Detector
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|
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Figure 2.1: Complete block diagram for the pitch detector, voicing decision,

and confidence measures.
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degrade the algorithm’s precision in determining the pitch.) The standard
short-time autocorrelation function is calculated for each successive, 51.2

ms speech segment. Successive segments are overlapped by 75 percent.
5121
R(l)y = Y s(n)s(n+1) 1=0,1,...,511 (2.1)
n=1
where R(l) is the autocorrelation function and s(n) is the 512 point seg-
ment of the signal. (The autocorrelation needs to be calculated only for
1=0,30,31,32,...,200 as described in the next paragraph.)

A peak picking algorithm is applied to the autocorrelation function
of each segment. This algorithm starts by choosing the maximum peak
(largest value) in the pitch range of 50 to 333 Hz (3 to 20 ms, =30 to 200).
This peak has a corresponding lag, L. (If there are two peaks of equal
value, the one with the smaller lag is chosen.) The period corresponding
to L is the first estimate of the pitch period. Another variable, K, is intro-
duced and set equal to this value of L. The value of K remains constant
throughout the peak picking algorithm and is used in Section 2.2.2.

As shown in Figure 2.2, the algorithm checks for peaks at one-half, one-
third, one-fourth, one-fifth, and one-sixth of the first estimate of the pitch
period. If % (rounded up) is within the pitch range, the maximum value of

the autocorrelation withinl = % —5to % +5 is located. If % —5is less than

30 (3 ms), 30 is chosen as the lower limit instead of L _ 5. If this new peak
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is greater than one-half of the old peak, the new corresponding lag replaces
the old corresponding lag, L. (This new I, might not be exactly £ as shown
in Figure 2.2.) We now have a new L which presumably is corrected for the
possibility of a pitch period doubling error. This test is performed again
to check for double doubling errors (four-fold errors). If this most recent
test fails, a similar test is performed for tripling errors of this new L. This
test checks for pitch period errors of six-fold. If the original test failed, the
original L is tested (in a similar manner) for tripling errors and errors of
five-fold. With a sampling rate of 10 kHz (after decimation), the final value

of L is used to calculate the pitch estimate, Fyp, by the equation

o 10{(100. (22)

The pitch error is defined {34] as

Fo — Fo,

Fy,,, = 100 (-——FTO-‘—) (2.3)

where Fp, is the actual pitch. The error is defined relative to Fy rather than
F,, because processing algorithms which are to make use of Fy will need

a pitch confidence measure which reflects error relative to the Fy. Fo, is

calculated as the average period length of all of the pitch periods that are at
least 50 percent within the analysis window. The method for determining
the actual length of each pitch period makes use of a terminal interactive

program developed for this purpose [22].
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F,,, Gross Fine Error

Standard Error Standard

SNR | Average | Deviation | (%-age of | Average | Deviation
(dB) | (%) (%) Segments) | (%) (%)
0o 0.837 6.744 0.969 | 0.476 1.894
12 0.926 6.312 0.969 | 0.495 1.880
6 1.103 6.442 1.260 | 0.499 1.972
0 1.184 9.228 1.939 [ 0.548 1.937
-6 1.958 14.070 4.411 | 0.598 2.328
—-12| -0.065 34.619 15.075 | 0.528 3.585
—18 | —12.259 62.223 42.172 | 0.539 6.098

Table 2.1: Results of the Pitch Detection Algorithm

The results for the pitch detector can be found in Table 2.1 which in-
cludes the average and standard deviation of Fy,,,. The term gross error
was originally introduced by Rabiner, et al. [25]. Table 2.1 uses the 20
percent definition of gross error {34]. This definition is used because it pro-
duces resnlts similar to the Rabiner 1 ms definition and the density function
for the fine errors is symmetric without favoring high or low pitched speak-
ers. As will be seen later, 20 percent corresponds to the base of the pitch
deviation triangle. A 20 percent “gross error” has occurred if the actual
pitch differs by more than 20 percent from the estimated pitch, that is,
| Foorr| > 20. The percentage of segments in which a gross error has oc-
curred is listed in the table. Errors that are not gross are considered to be
“fine errors” [25]. The average and standard deviation of the fine errors are

also included in the table.
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2.2.2 Features for the Voicing Decision and Confidence Measures

The results in Table 2.1 include all voiced segments in the database.
All segments that are unvoiced (including silence) or transitional (which
include both voiced and unvoiced speech) are not used in the calculation
of the results. A pitch is estimated for all segments independent of the
voicing decision. This is done because, for high levels of noise, the voicing
algorithm may have classified a segment incorrectly, yet the pitch estimate
could still be accurate. This estimate is then used for pitch smoothing of
adjacent segments that may have been classified correctly.

2.2.2 Features for the Voicing Decision and Confi-
dence Measures

Three features derived from the autocorrelation function are passed to the

voicing decision and the confidence measure algorithms. These are 1) ¢/, the

rms energy of the segment, 2) p', the maximum value of the autocorrelation

function over the pitch range normalized by the value at zero lag, and 3)

', the rms of the normalized autocorrelation function over the pitch range.

These features are calculated as follows.

g (_1;%)% (2.4)

P = —-'—)— | (2.5)

(2.6)
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The noise-corrupted speech must have a zero mean for r’ to be a valid
feature. To assure a zero mean, the speech is highpass filtered with a 6
pole Butterworth filter having a cutoff frequency of 20 Hz. This filter is
incorporated with the 600 Hz lowpass filter as shown in Figure 2.1.
Although the voicing decision and the confidence measures are derived
from these autocorrelation features, they do not depend on the accuracy
of the pitch detector. In fact, these features will be used to determine the

pitch confidence measure which reflects the pitch accuracy.
2.2.3 Voicing Decision

A plot of ' versus p' for the no noise case is shown in Figure 2.3. The
voiced and unvoiced regions overlap so that a reliable discrimination is
not possible. Upon analysis, it was found that most of the unvoiced points
which fall in the voiced region occur when no speech is present and therefore
¢’ is very small. Since €' is the rms energy of the segment, an energy
threshold is used to define these points as unvoiced. The threshold was
chosen based upon the energy of the segments during no speech and is equal
to 14 (quantization levels). This energy threshold was included to correct
for peaks that can occur in the normalized autocorrelation function when
very low levels of periodic background noise are present. It is important to

note that this energy threshold is not a function of the speech level or the
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SNR. For any segment with ¢’ < 14, p' and r' are set equal to zero. p' and
' are also set equal to zero for any segment with p' < 0.

A plot of ' versus p' (SNR = oo dB) after the thresholds are applied
is shown in Figure 2.4. All of the unvoiced points that were in the voiced
region have been eliminated such that a reliable discrimination analysis can
now be performed. As noise is added (Figure 2.4-Figure 2.6) the cluster of
unvoiced points remains fairly constant, but the voiced region moves toward
the unvoiced region. This is intuitively appropriate since, in the limit of
increasing noise, the voiced segments become entirely noise corrupted and
therefore appear as unvoiced segments.

In Figure 2.3-Figure 2.6, only one sentence, “Every salt breeze comes
from the sea,” spoken by three males and three females is used. In Fig-
ure 2.7-Figure 2.8, the entire development database is plotted for seven
SNRs (c0,12,6,0,~6,—12,—18 dB). The unvoiced region, Figure 2.7, is
virtually independent of SNR. The voiced region, Figure 2.8, has two lim-
iting areas. For low SNRs, the voiced points tend toward the dark area on
the lower left (the unvoiced region). For high SNRs, the voiced points tend
toward the dark area on the upper right.

Considering the behavior of the voiced and unvoiced regions as described

above, it was decided that a fixed discrimination boundary would be used.
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Figure 2.3: ' versus p’' for the example sentence “Every salt breeze comes

from the sea” spoken by 3 males and 3 females. SNR = oo dB, no energy
threshold.
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Figure 2.4: 7' versus p' for the example sentence “Every salt breeze comes
from the sea” spoken by 3 males and 3 females. SNR = oo dB.
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Figure 2.5: ' versus p' for the example sentence “Every salt breeze comes

from the sea” spoken by 3 males and 3 females. SNR = —6 dB.
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Figure 2.6: 7' versus p' for the example sentence “Every salt breeze comes
from the sea” spoken by 3 males and 3 females. SNR = —18 dB.
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Figure 2.7: ' versus p' for the unvoiced region of the entire development
database at seven SNRs. Discrimination boundaries for the voicing decision
and voicing confidence are superimposed.
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Figure 2.8: r' versus p' for the voiced region of the entire development
database at seven SNRs. Discrimination boundaries for the voicing decision
and voicing confidence are superimposed.
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This has the advantage that the voiced and unvoiced regions need not have
a definite separation as is the case with clustering algorithms [35]. This
is an advantage because in high levels of noise, there is not a separation
of the regions, yet it is still possible to identify many of the voiced speech
segments.

After trying several non-linear discrimination boundaries, none were
found superior to a simple linear boundary. Superimposed on both Fig-
ure 2.7 and Figure 2.8 is a plot of the boundaries used in this algorithm.
Only five values are necessary to describe these four boundaries. The slope
of the lines is —.5 and the y-axis intercepts are .1, .285, .45, and 1.0. The
boundary at y = .285 is used for the voicing decision and will be called
the “critical” boundary. This value is chosen to minimize the numbers of
voicing errors at 0 dB SNR. The other three boundaries are used for the
voicing confidence measure and will be discussed later.

The results of the voicing algorithm are given in Table 2.2. The table in-
cludes voiced-to-unvoiced (V/U) and unvoiced-to-voiced (U/V) errors [25].
These errors are tabulated in terms of the number of errors and the percent-
age of errors. For very high levels of noise, the U/V errors remain relatively
low and the V/U errors approach 100 percent. Both of these results are
consistent with the discussion above. The transitional segments are not

included in the error calculations.
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V/U [ V/U | U/V | U/V | Total

SNR | Error | Error | Error | Error | Error
@B)| (#) | () | (#) | (%) [ (#)

00 18| 0.87 0| 0.00 18

12 19 0.92 0 0.00 19

6 22 1.07 3 0.24 25

0 32| 1.55 29 | 2.31 61

—6 125 | 6.06 39| 3.11 164

-12 481 | 23.32 34| 2.1 515

—18 | 1484 | 71.93 31| 247 1515

Number of Voiced Segments = 2063
Number of Unvoiced Segments = 1256
Number of Transitional Segments = 1059

Table 2.2: Results of the Voicing Decision Algorithm

2.2.4 Voicing Confidence

A voicing confidence measure, c,, is defined to have a range of [-1.0,+1.0].
¢, < 0.0 denotes an unvoiced segment while ¢, > 0.0 denotes a voiced
segment. The larger the magnitude of the confidence, the more likely the
voicing decision is correct.

Referring to Figure 2.8, it is reasonable to expect that the further to the
upper right a point is, the more likely it is that the segment is voiced. For
any point lying above the upper boundary, ¢, = +1.0. The area between
the critical boundary and the first boundary to its upper right is lineatly
mapped from 0.0 to 4+0.9. The area between the two upper right boundaries

is linearly mapped from +0.9 to +1.0. This positive confidence measure
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reflects a normalized level of periodicity. The area between the critical
boundary and the lower left boundary is linearly mapped from 0.0 to —1.0.
For any point below the lower boundary, ¢, = —1.0.

The results of the confidence algorithm are given in Table 2.3. This ta-
ble summarizes the data for all seven SNRs. The V/U errors are tabulated
categorically for ¢, < 0.0 and are also totaled independent of confidence.
The U/V errors are similarly tabulated. The voicing error is defined as the
percentage of segments in a given confidence range that are classified incor-
rectly. Column three shows the number of segments in error and column

four shows the total number of segments in the given confidence range.

Since the percentage based error depends on the ratio of the number of
voiced segments to the number of unvoiced segments in the speech under
analysis, an error measure is defined which is independent of the voiced
to unvoiced ratio of the speech material. A few variables are introduced
which are used to define the normalized error ratio. My is the number of
voiced segments falling within a given confidence range. My is the number
of unvoiced segments falling within a given confidence range. Ty is the total
number of voiced segments in the entire database. Ty is the total number
of unvoiced segments in the entire database. The error ratio depends on
the type of error that occurred, V/U or U/V. Consequently, there is a V/U

error ratio, ERy/y, which is used for ¢, < 0.0 and an U/V error ratio,
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Voicing | Voicing Total Normalized

Co Error Error | Segments Error
(%) (#) (#) Ratio
[1.0,-0.9) 0.46 19 4170 | 0.0028
[0.9,-0.8) 0.00 0 7|  0.0000
[—0.8,-0.7) | 13.64 6 44 | 0.0961
(0.7,-0.6) | 17.78 24 135 0.1316
[~0.6,—0.5) [ 18.89 78 413 | 0.1418
(~0.5,-0.4) | 19.12 187 978 | 0.1439
' [-0.4,-0.3) 27.55 362 1314 0.2315
[-03,-0.2) | 3141 480 1528 |  0.2788
[-0.2,-0.1) | 38.38 494 1287 | 0.3793
120.1,40.0) | 55.25 531 961 | 0.7518

[V/U Errors | 20.13] 2181 | 10837 [ 01534 |
10.0,+0.1) [ 25.64 80 312 0.5664
70.1,+0.2) | 14.64 41 280 | 0.2818
+0.2,40.3) 2.51 6 239 | 0.0423
1+0.3,4.0.4) 2.53 5 198 | 0.0426
1+0.4,+0.5) 1.58 3 190 [ 0.0264
[+0.5,+0.6) 0.00 0 184 0.0000
(+0.6,+0.7) 0.00 0 209 | 0.0000
[+0.7,40.8) 0.46 1 218 | 0.0076
[ [+0.8,40.9) 0.00 0 204 | 0.0000
[+0.9, +1.0] 0.00 0 10362 | 0.0000

[U/V Brrors | 1.10[ 136 | 12396 | 0.0182 |

Number of Voiced Segments = 14441
Number of Unvoiced Segments = 8792

Table 2.3: Results of the Voicing Confidence algorithm
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ERy/v, which is used for ¢, > 0.0.

My

ERV/U = H(—j— c, < 0.0 (27)
M
ERyyy = T\ﬁ ¢, > 0.0 (2.8)

Equation 2.7 and Equation 2.8 express the ratio of the number of segments
incorrectly classified to the number correctly classified for each confidence
range.

Since the error ratio will depend on the V/U ratio of the database,

Ty /Ty, a normalized error ratio is defined.

: _ (My/Ty) _ ERvy
NERviv = My/Ty) = (Tv/Tv) (29)

NERyy = (Mo/T) _ ERu

(My /[Tv) (Ty/Tv)

(2.10)

For example, the range [0.2,0.3) has 6 unvoiced segments and 239 — 6 =
233 voiced segments. There are 14441 voiced segments in the database
and 8792 unvoiced segments. The normalized error ratio for this range is
NERy,v = (6/8792)/(233/14441) = 0.0423.

The normalized error ratio is included as column five in Table 2.3. As
shown by Equation 2.9 and Equation 2.10, this measure has the advan-
tage of being independent of the V/U ratio of the speech material. The

voicing confidence algorithm produces a confidence measure, c,, with the
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desirable property that the normalized error ratio decreases with increasing
magnitude of confidence.

It is interesting to note that the normalized error ratio may be converted
to an error ratio for any given database by multiplying NERy,y (for ¢, <
0.0) by the V/U ratio of the new database, Tv /Ty, and by multiplying
NERy,v (for ¢, > 0.0) by the U/V ratio, Ty/Tv. If there are more voiced
segments in the new database, the error ratio will reflect the increase of
V/U errors. If no assumption is made regarding the V/U ratio for a given
database, the voicing confidence can only be used qualitatively.

One final note is that Table 2.3 is a compilation of all SNRs. While
the normalized error ratio is independent of the V/U ratio of the speech

material, it is still dependent on the SNR.
2.2.5 Voicing Decision and Confidence Smoothing

A modified median 9 smoother [36] is applied to c, resulting in é,. Since
the voicing decision is inherent in c,, it also is smoothed. Median 9 was
chosen for this 75 percent overlap algorithm so that it would cover the
same amount of time as a median 5 smoother used with 50 percent overlap
methods [22]. Since voiced points tend toward the unvoiced region as noise
is added, it is more likely that a voiced point will be low in confidence

(tending toward —1.0) than an unvoiced point will be high in confidence
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V/U | V/U | U/V | U/V | Total
SNR | Error | Error | Error | Error | Error
(dB) | (#) | (%) | (#) | (%) | (#)
00 5| 0.24 0| 0.00 5
12 5 0.24 0f{ 0.00 5
6 31 0.15 3| 024 6
0] 15| 073 29| 2.31| 44|
—6 79| 3.83 39| 3.11 118
-12 401 | 19.44 34| 2.71 435
—18 | 1402 | 67.96 31| 247} 1433
Number of Voiced Segments = 2063
Number of Unvoiced Segments = 1256
Number of Transitional Segments = 1059

Table 2.4: Results of the Smoothed Voicing Decision Algorithm

(tending toward +1.0). For this reason, the median 9 smoother is modified

such that the median value of the confidence is accepted only if it is greater

in value than the original confidence.

The results of the smoothed voicing algorithm are given in Table 2.4.

Compared with Table 2.2, many of the V/U errors are corrected without an

increase in the number of U/V errors. There are more U/V errors than V/U

errors for 0 dB SNR while the opposite is true for most of the remaining

SNRs. The critical discrimination boundary may be raised to balance the

errors at, for example, 0 dB, but many V/U errors will result for most

SNRs.

The results of the smoothed confidence algorithm are given in Table 2.5.
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Many voiced segments now have a higher confidence and many V /U errors
have been corrected. This smoothing technique has introduced no errors
(at least for the development database). The normalized error ratio for the
confidence ranges [—0.9, —0.8) and [—0.7,—0.6) have no meaning because

there are no segments in those ranges.

2.2.6 Pitch Confidence

Giordano [7] has proposed the use of a pitch confidence measure, but did
not propose a method of obtaining such a measure. This section will assume
the nieed for pitch confidence and propose a method of obtaining it. |
A pitch confidence measure, co, is defined to have a range of [0.0,+1.0].
Pitch error is defined as Fp,,, (Equation 2.3). A confidence of 0.0 implies
| Fo,,.| < 20. A confidence of +1.0 implies | Fp,,,| = 0. The confidence range
of 0.0 to +1.0 is linearly mapped from 20 percent to 0 percent deviation.
The maximum deviation of 20 percent is a useful limit because it corre-
sponds to the definition of 20 percent gross error and, as will be seen in
this section, corresponds to the base of the pitch deviation triangle.
Figure 2.9 shows the pitch error for all the voiced segments in the

database (SNR = oo dB). The y-axis is Fy,,, and the z-axis is the value
z = p +2r. (2.11)

The thresholds for ¢’ and p' in the voicing decision (Section 2.2.3) are also
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Voicing | Voicing Total Normalized
Co Error Error | Segments Error
(%) (#) (#) Ratio
1.0, -0.9) 0.24 10 4099 [ 0.0015
~0.9,-0.8) 0.00 0 0 —
[-0.8,-0.7) 0.00 0 1| 0.0000
[-0.7,-0.6) 0.00 0 0 —
' [-0.6,-0.5) 0.00 0 12| 0.0000
~0.5,-0.4) 5.67 20 353 | 0.0366
(-0.4,-0.3) | 13.84 197 1423 | 0.0978
[-0.3,-0.2) | 24.19 501 2071 | 0.1943
[-0.2,-0.1) | 36.52 561 1536 | 0.3503
' [-0.1,40.0) | 57.98 621 1071 | 0.8402
[V/U Errors | 18.08 ] 1910 10566 [ 0.1343 |
[+0.0,+0.1) | 25.56 80 313 | 0.5640
+0.1,40.2) | 13.71 41 299 | 0.2610
+0.2,+0.3) 2.71 6 221 | 0.0458
| [+0.3,4.0.4) 2.51 5 199 | 0.0423
[+0.4,40.5) 1.61 3 186 | 0.0269
[40.5,+0.6) 0.00 0 176 | 0.0000
[+0.6,+0.7) 0.00 0 220 |  0.0000
[+0.7,40.8) 0.47 1 214 | 0.0077
[+-0.8,+40.9) 0.00 0 212 | 0.0000
[10.9,+1.0] 0.00 0 10627 | 0.0000

[U/VErrors | 1.07] 136 12667 [ 0.0178 |

Number of Voiced Segments = 14441
Number of Unvoiced Segments = 8792

Table 2.5: Results of the Smoothed Voicing Confidence Algorithm
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applied here. For any fixed =, Equation 2.11 represents a line parallel to the
discrimination boundaries of the voicing algorithm. (If the error is added
to Figure 2.4 as a third axis, Figure 2.9 can be viewed as a two dimensional
perspective of this three dimensional plot.) Therefore, the point ¢ = .57 is
the threshold for the voicing decision.

As noise is added, Figure 2.9-Figure 2.11, the points move to the left
and begin to diverge. The plots suggest that for a given z value, the error
density function is independent of the SNR. This is due to the fact that
the value of z for a voiced segment depends on the SNR of the segment
and not the SNR of the utterance. Therefore, knowledge of the SNR is not

needed to determine the error density function for a given value of z.

Figure 2.12 is a plot of the entire development database for seven SNRs.
Since all of the points represent voiced segments, any points with z < 57
represent V/U errors. There is a distinct triangle within which most of the
errors occur. This will be called the “pitch deviation triangle” and it is
supgrimposed on Figure 2.12. This triangle can be mapped to the pitch

confidence, ¢q, by the following equation.

0.0 z <05
co=14 % 05<z<22 (2.12)

1.0 22<z
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Figure 2.10: Fy,,, versus p'+ 2r' for the entire development database. SNR
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Figure 2.11: Fy,,, versus p' + 2r' for the entire development database. SNR
= —18 dB.
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Note that the point z = .57 maps to co = 0.04. The maximum deviation of

the pitch in Hz is predicted by Fy, which is calculated using the equation

Fod = .2(1 — Co)Fo. (2.13)

The results of the pitch confidence algorithm are given in Table 2.6.
The rightmost column contains a tabulation of the number of segments in
each confidence range. Column four contains a tabulation of the number of
20 percent gross errors that occur and column two contains the resulting
percentage of errors. Column five contains a tabulation of the errors that
occur outside of the deviation predicted by the confidence measure, that
is, |Fo.,r] > 20(1 — co). These errors will be called “confidence errors.”
Column three contains the resulting percentage of confidence errors for a
given confidence range. Totals are given at the bottom of the table. Recall
that these results are for all seven SNRs.

Table 2.6 is arranged so that the pitch confidence, co, can be interpreted
as providing two items of information, 1) the probabilistic maximum de-
viation of the pitch and 2) the probability that the pitch is within that
deviation. For example, ¢, = .12 infers that there is a 100 — 8.84 = 91.16
percent chance that the actual pitch is within 20(1 —.12) = 17.6 percent of
the estimated pitch.

There exist errors that are greater than 20 percent (gross errors). To
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Figure 2.12: Fy,,, versus p' + 2r' for the entire development database at
seven SNRs. The pitch deviation triangle is superimposed.
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Gross | Confidence | Gross | Confidence ‘otal
Co Error Error Error Error Segments
(%) (%) (#) (#) (#)

0.00,0.05) | 48.73 4877 1110 1111 2278
0.05,0.10) | 18.51 18.51 | 102 102 551
(0.10,0.15) | 8.16 8.84 36 39 411
0.15,0.20) | 8.60 8.60 41 41 477
[0.20,0.25) | 5.50 5.92 26 28 473
0.25,0.30) | 3.38 417 17 21 503
0.30,0.35) | 2.06 2.06 12 12 582
0.35,0.40) | 0.76 0.76 5 5 657
[0.40,0.45) [ 1.66 1.66 14 14 842
0.45,0.50) | 0.69 0.69 7 7 1011
0.50,0.55) | 0.09 0.09 1 1 1133
0.55,0.60) | 0.36 0.36 5 5 1387
0.60,0.65) | 0.15 0.15 2 2 1333
[0.65,0.70) | 0.00 0.00 0 0 1290
0.70,0.75) | 0.00 0.00 0 0 718
[0.75,0.80) [ 0.00 0.00 0 0 403
[0.80,0.85) | 0.00 0.00 0 0 264
' [0.85,0.90) | 0.00 0.00 0 0 94
[0.90,0.95) | 0.00 0.00 0 0 4
[0.95,1.00] [ 0.00 0.00 0 0 0
[ Totals | 9.54] 9.61 | 1378 | 1388 | 14441 |

Table 2.6: Results of the Pitch Confidence Algorithm
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visualize these errors, the entire range of errors is plotted in Figure 2.13.
The y-axis still represents error, but a different scale is used. The percent
error definition would have produced a plot which was heavily skewed. The

octave definition of error [34],

F,
Fopoey = LOE2 ( F:,)’ (2.14)

produces a balanced plot. A 20 percent error corresponds roughly to .25

oct. Many pitch doubling errors can be seen at +1.0 oct while tripling, qua-
drupling, and halving errors occur at +1.6, +2.0, and —1.0 oct respectively.
This definition of error is not used for the pitch deviation triangle because
the pitch deviation within .25 oct is skewed which would result in a more
complex definition of pitch confidence. That is, the fine errors would not be
symmetric. Also, any further processing using the pitch confidence based
on the octave would require the calculation of a logarithm which results in

more computation time than the calculation of a percent.

All of the pitch confidence errors that occur within the confidence range
of [0.30,0.65) and most of the errors below co = 0.3 are also gross errors.

Pitch smoothing will correct many of these errors.
2.2.7 Pitch Smoothing

Many of the gross errors with high pitch confidence are harmonic errors,

which is apparent in Figure 2.13. Since many of the gross errors that occur
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Figure 2.13: Fom(m) versus p' + 2r' for the entire development database at

seven SNRs.
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are isolated, a median smoother is useful. As with the voicing smoothing, a
modified median 9 smoother [36] is used to smooth the pitch estimate, Fo,
resulting in Fy. There are two conditions under which the original estimate
is chosen instead of the median value. First, since there are no gross errors
for ¢o > .65, no smoothing needs to be done. Second, if the original estimate
is within 20 percent of the median value, the original estimate is chosen.
This 20 percent threshold was found to be better in reducing the standard
deviation of the fine errors than the originally proposed 5 percent threshold
was [22].

Table 2.7 contains the results of the pitch smoothing algorithm. (ﬁb,,,
is used to signify that Fp,,, in Equation 2.3 is calculated using Fy instead of
Fy.) Comparing Table 2.7 to Table 2.1, the percentage of gross errors has
been reduced while the standard deviation of the fine errors has increased
only slightly. Many of the gross errors are doubling errors. This information
may be used for some pitch synchronous algorithms. If the analysis window
is chosen as an even integer number of estimate periods, a pitch doubling
error will still result in an integer number of periods within the window.
Under this condition, a window size of four times the pitch period may be
well suited for formant analysis [6]. A pitch doubling error will result in a

window size of twice the pitch period.

The analysis of the pitch confidence after pitch smoothing is found
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Fy... Gross Fine Error

Standard Error Standard

SNR | Average | Deviation | (%-age of | Average | Deviation
(dB) | (%) (%) Segments) | (%) (%)
0o 0.761 4.259 0.533 | 0.510 1.974
12 0.783 4.270 0.533 | 0.530 1.986
6 0.701 2.971 0.388 | 0.578 2.126
0 0.783 3.163 0.582 | 0.637 2.170
-6 1.699 7.228 2.181 [ 0.747 2.606
~12 2.358 13.449 6.108 | 0.803 3.940
18| —1.257 35.764 29.811 | 0.884 6.429

Table 2.7: Results of the Smoothed Pitch Detection Algorithm

in Table 2.8. Compared with Table 2.6, many of the gross errors have
been eliminated. Since there is no increase in confidence errors, all of the
smoothed pitch estimates fall within the pitch deviation triangle. The pitch
confidence has been improved by smoothing the pitch. It can be improved

further by smoothing the pitch confidence itself.

2.2.8 Pitch Confidence Smoothing

There are two goals set forth in smoothing the pitch confidence, ¢o. First,
any‘ pitch error that is greater than the maximum deviation indicated by
the pitch confidence should have its confidence smoothed downward (toward
0.0). Second, any pitch error that is less than the maximum deviation indi-
cated by the pitch confidence should have its confidence smoothed upward

(toward +1.0).
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Gross | Confidence | Gross | Confidence ‘otal
Co Error Error Error Error Segments
(%) (%) (#) (#) (#)

10.00,0.05) | 31.30 31.39| 713 715 2278
10.05,0.10) | 9.07 10.16 50 56 551
0.10,0.15) | 5.90 6.80 26 30 441

10.15,0.20) | 3.35 3.35 16 16 477
10.20,0.25) | 1.90 2.33 9 11 473
0.25,0.30) | 0.60 1.39 3 7 503

0.30,0.35) | 0.86 0.86 5 5 582

[0.35,0.40) | 0.15 0.15 1 1 657
[0.40,0.45) | 0.36 0.48 3 4 842
0.45,0.50) [ 0.20 0.20 2 2 1011

0.50,0.55) | 0.00 0.00 0 0 1133

0.55,0.60) | 0.00 0.00 0 0 1387

[0.60,0.65) | 0.00 0.00 0 0 1333
10.65,0.70) | 0.00 0.00 0 0 1290
0.70,0.75) | 0.00 0.00 0 0 718
[0.75,0.80) | 0.00 0.00 0 0 403
[0.80,0.85) | 0.00 0.00 0 0 264
(0.85,0.90) | 0.00 0.00 0 0 94
(0.80,0.95) | 0.00 0.00 0 0 4
[0.95,1.00] | 0.00 0.00 0 0 0

[ Totals | 5.73 | 587 828 ]| 847 | 14441 |

Table 2.8: Results of the Pitch Confidence Algorithm after Pitch Smoothing
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A median 9 smoother [36] is applied to co (resulting in &) with the
following condition. Consulting Table 2.8, it can be seen that there are
very few pitch errors (gross and confidence errors) for ¢o > .45. Except
for these few errors, the first goal set forth does not apply. To still be in
accordance with the second goal, the maximum of the median value and
the original confidence is chosen as the smoothed confidence. For ¢o < .45,
the standard median 9 smoother is applied.

The results of the smoothed confidence algorithm are given in Table 2.9.
Although a gross error cannot be corrected by confidence smoothing, the
confidence has been lowered for many of these segments (comparéd to Ta-
ble 2.8). Smoothing has increased the total number of segments in the
range of {0.45,0.85) which is in accordance with the second goal. Unfottu-
nately a few confidence errors have appeared. Precision in determining the
error deviation has caused these few errors.

Since the voicing confidence, c,, and the pitch confidence, co, have been
smoothed in different ways, a smoothed pitch confidence of & = 0.04 does

not necessarily correspond to a smoothed voicing confidence of ¢, = 0.0.
2.3 Independent Analysis

The method presented in this chapter is an algorithm that does not require

training before its use. The behavior of the three features (derived from
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Gross | Confidence | Gross | Confidence Total
co Error Error Error Error Segments
(%) (%) (#) (#) (#)

[10.00,0.05) | 31.17 31.21 [ 1729 730 2339
[0.05,0.10) | 5.70 6.11 28 30 491
0.10,0.15) | 4.68 4.68 21 21 449
[ 0.15,0.20) | 2.83 4.14 13 19 459
0.20,0.25) | 2.88 3.29 14 16 486
0.25,0.30) | 2.32 3.29 12 17 517
0.30,0.35) | -0.83 1.16 5 7 604
1[0.35,0.40) | 0.00 0.00 0 0 570
0.40,0.45) | 0.67 0.83 4 5 600
0.45,0.50) | 0.20 0.20 2 2 1018
0.50,0.55) | 0.00 0.35 0 4 1134
0.55,0.60) | 0.00 0.14 0 2 1421
0.60,0.65) | 0.00 0.00 0 0 1374
[0.65,0.70) [ 0.00 0.14 0 2 1399
[0.70,0.75) | 0.00 0.26 0 2 777
[0.75,0.80) | 0.00 0.00 0 0 434
10.80,0.85) | 0.00 0.00 0 0 271
0.85,0.90) | 0.00 0.00 0 0 94
(0.90,0.95) | 0.00 0.00 0 0 4
[0.95,1.00] | 0.00 0.00 0 0 0
[ Totals | 5.73] 593 ] 828 ] 857 | 14441 |

Table 2.9: Results of the Smoothed Pitch Confidence Algorithm after Pitch
Smoothing



2.3 Independent Analysis 61

the autocorrelation function) in noise was observed so that thresholds and
curves could be fit to the data. The results presented thus far have been
for the utterances used to develop the algorithm. It is therefore conceivable
that the method is biased toward these utterances. To determine if this is
the case, the method is applied to an entirely different database (the test
database) to assure that the chosen thresholds and curves are representative
of the behavior of the features.

This test database is comprised of 6 speakers, 3 male and 3 female. All
six speakers are different than those in the first database. The following
sentences were spoken.

1) We were away a year ago.

2) I know when my lawyer is due.

3) Every salt breeze comes from the sea.

4) [ was stunned by the beauty of the view.

5) Never learn a yellow lion roar.

Sentences 1 and 3 are also contained in the development database.

The results of the smoothed pitch detection algorithm are shown in Ta-

ble 2.10. The results are similar to Table 2.7. The results of the smoothcd
voicing decision algorithm are shown in Table 2.11. Compared with Ta-
ble 2.4, the percentage of V/U errors is slightly higher for low noise and

slightly lower for high noise. The results of the smoothed voicing confi-
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Fou,, Gross Fine Error
Standard Error Standard
SNR | Average | Deviation | (%-age of | Average | Deviation
(dB) (%) (%) Segments) (%) (%)
fos) 0.301 1.451 0.000 0.301 1.451
12 0.292 1.453 0.000 | 0.292 1.453
6 0.286 1.509 0.026 0.280 1.473
0 0.279 1.797 0.053 0.280 1.720
—6 0.278 2.708 0.211 | o0.271 2.429
—12 0.681 7.945 2.427 | 0.449 3.667
—18 -0.212 22.077 15.594 0.401 6.170
Table 2.10: Results of the Smoothed Pitch Detection Algorithm (Test
Database)

dence algorithm are shown in Table 2.12. The percentage of V/U errors
for low unvoiced confidence (negative confidence near zero) has increased
(compared to Table 2.5) and the percentage of U/V errors for low voiced
confidence has decreased. This is due to the fact that the ratio of voiced to
unvoiced segments is larger in the test database. Comparing the normal-
ized error ratio of the two databases, it can be seen that the expected error
is more similar. The results of the smoothed pitch confidence algorithm
after pitch smoothing are shown in Table 2.13. Compared with Table 2.9,
there are fewer errors in the low confidence range. There are only a few
confidence errors that are not gross errors. This indicates that the pitch

deviation triangle is still accurate for the test database.
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v/u|lv/ulu/v|u/v Total
SNR | Error | Error | Error | Error | Error
@B)| ) [ (%) | #) | (%) | (#)

00 24 | 0.63 1] 0.07 25
12 24| 0.63 2| 0.15 26
6 22| 0.58 21 0.15 24
0 7| 0.18 42| 3.10 49

-6 77| 2.03 80| 5.90 157
-12 424 | 11.19 79| 5.83| 503
—18 | 2156 | 56.89 81| 5.97| 2237
Number of Voiced Segments = 3790
Number of Unvoiced Segments = 1356
Number of Transitional Segments = 1104

Table 2.11: Results of the Smoothed Voicing Decision Algorithm (Test
Database)

2.4 Conclusions

The method presented has been designed for situations where the speech
signal below 600 Hz is not significantly distorted and the added noise is
broadband. Consequently, only stationary white noise cases are discussed so
that a basis of results is obtained on which to extrapolate to non-stationary
and non-white noise results. With the assumption of broadband noise, the
results of non-white noise can be implied as long as the SNR below 600 Hz
is the same as the white noise case. For non-stationary noise, the results
will again depend on the local SNR. Since the method is non-adaptive, the

results will not depend on the direction (increasing or decreasing) of the
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Voicing | Voicing Total Normalized
¢y Error | Error | Segments Error
(%) (#) (#) Ratio
[-1.0,-0.9) 1.61 74 4600 | 0.0058
[-0.9,-0.8) 0.00 0 0 —
[-0.8,-0.7) 0.00 0 0 —~
[-0.7,-0.6) 0.00 0 1] 0.0000
—0.6,—0.5) 5.45 3 55 | 0.0206
~0.5,-0.4) | 18.73 47 251 | 0.0824
~0.4,-0.3) | 19.78 272 1375 | 0.0882
0.3,-0.2) | 26.60 598 2248 | 0.1297
-0.2,-0.1) | 41.48 847 2042 | 0.2536
[<0.1,40.0) | 65.33 893 1367 | 0.674l
[V/U Errors | 2290 2734 11939] 0.1063 |
+0.0,+0.1) | 22.62 133 588 | 0.8170
+0.1,40.2) | 14.50 76 524 | 0.4741
10.2,+0.3) 9.73 43 442 | 0.3012
(1+0.3, +0.4) 5.10 21 412 0.1501
[10.4,+0.5) 1.16 4 345 | 0.0328
[ [+0.5,+40.6) 2.02 7 347 | 0.0575
[+0.6,40.7) 0.00 0 296 | 0.0000
(+0.7,40.8) 0.00 0 306 | 0.0000
[ [10.8,40.9) 0.00 0 361 | 0.0000
[+0.9, +1.0] 0.01 3 20462 | 0.0004
[U/VErrors | 1.19]  287] 24083 | 0.0337 |
| Number of Voiced Segments = 26530
Number of Unvoiced Segments = 9492

Table 2.12: Results of the Smoothed Voicing Confidence Algorithm (Test
Database)
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Gross | Confidence | Gross | Confidence Total
o Error Error Error Error Segments
(%) (%) (#) (#) (#)

[0.00,0.05) | 19.49 19.58 | 670 673 3437

10.05,0.10) | 2.02 2.12 19 20 942
{0.10,0.15) | 0.50 0.75 4 6 796
0.15,0.20) | 0.00 0.27 0 2 730

0.20,0.25) | 0.14 0.14 1 1 691

0.25,0.30) | 0.00 | 0.29 0 2 684

'[0.30,0.35) | 0.00 0.00 0 0 770
0.35,0.40) | 0.00 0.13 0 1 741

'{0.40,0.45) | 0.00 0.70 0 6 861
0.45,0.50) | 0.00 0.26 0 4 1559

0.50,0.55) | 0.00 0.00 0 0 2286

0.55,0.60) | 0.00 0.00 0 0 2094

0.60,0.65) | 0.00 0.31 0 8 2558

0.65,0.70) [ 0.00 0.03 0 1 3555

10.70,0.75) | 0.00 0.11 0 3 2783
10.75,0.80) | 0.00 0.24 0 3 1272
{0.80,0.85) | 0.00 0.00 0 0 632
0.85,0.90) | 0.00 0.00 0 0 139

0.90,0.95) | 0.00 0.00 0 0 0

[0.95,1.00] | 0.00 0.00 0 0 0

[ Totals | 2.62] 2.75] 694 | 730 | 26530 |

Table 2.13: Results of the Smoothed Pitch Confidence Algorithm after
Pitch Smoothing (Test Database)
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changing noise. The portion of the speech spectrum below 600 Hz has the
greatest energy (for voiced speech) and is the most likely to survive the
addition of high levels of noise. Therefore, the method is only influenced
by low frequency noise.

The calculations required for this integrated method are quite reason-
able. The only exception is the calculation of the autocorrelation. With
fast autocorrelation techniques (Section 3.3, [37],{38]), even this calculation
can be performed quickly.

The pitch detection and pitch confidence results are better for female
speakers than for male speakers. The higher female pitch causes fewer
harmonics in the first formant range. Most of the voiced speech energy is
concentrated at these few harmonics which are not easily corrupted by the
addition of white noise. For male speakers, the speech energy is spread
over many harmonics which are more easily corrupted since they are lower
in amplitude for a given total speech energy. Therefore the autocorrelation
function is not as highly correlated at the correct period. It has been
observed by Sondhi [14] and confirmed by the present author that there are
cases where female speech becomes nearly sinusoidal, that is, most of the
speech energy is concentrated at only one harmonic.

The method is non-adaptive and requires no a priori information. It is

felt that adaptive techniques [30] could be used to improve the results for
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both the pitch detector and the voicing decision. Additional features could
be added to the voicing decision, but observing their relative behavior in
noise may be difficult.

Clipping algorithms have been used for spectral flattening [14], [18].
The clp(x] algorithm [18] was implemented with the autocorrelation pitch
detector in this chapter and applied to the development database. For the
smoothed pitch detection results, the number of gross errors were reduced
up to 50 percent for low levels of noise. For higher levels of noise (less than
0 dB), the results degraded. This is probably a result of the clipping levels
being influenced by the noise so that mostly noise compor;ents are left after
clipping. In terms of spectral flattening, high levels of white noise imply
a flat spectrum. A speciral flattener will probably reduce the components
that are not flat, the speech components. Since a reduction of errors for
speech in such noise was a goal of this chapter, clipping algorithms were

not explored further.



Chapter 3

Short-Time Analysis of Noise

This chapter provides an intuitive and mathematical basis necessary for
the understanding and implementation of the noise estimation algorithm
described in Chapter 4 [39]. There are many techniques for estitnating noise
[40]. The most appropriate method depends on the application and only
those techniques necessary for Chapter 4 are discussed.

This chapter is divided into a discussion of these main topics. First, a
popular method of spectral averaging and spectral smoothing is detailed.
Second, the spectral averaging method is extended. Although the two spec-
tral averaging methods provide the same expected value of the power spec-
trum, the extended method will be shown to be superior in certain spectral
separation cases (Chapter 4). Finally, cepstral windowing will be discussed

as a way to improve the sidelobe performance of spectral smoothing.

68
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3.1 Introduction

It is often necessary to estimate the power spectrum of a randomn sequence
[40]. Broadband noise (not impulse or sinusiodal noise) can be modeled as
a white noise sequence with zero mean and unit variance driving a linear
filter which may be time varying. The noise estimation then becomes a
filter estimation problem. If the filter has only poles, the noise estimation
can be made from the autoregressive (AR) model [41]. This is also know as
LPC analysis [42]. If the filter has only zeroes, the estimation can be made
from the moving average (MA) model [41]. The autocorrelation function
of a MA model of a noise sequence is finite in lag [43].

Noise estimation for any linear model can effectively be accomplished
with windowing [44] and short-time Fourier analysis [45] (37] [46]. Noise
estimation using these techniques is applied in Chapter 4 and is therefore
discussed in Chapter 3. It is important to note that a finite number of poles
can be modeled using an infinite number of zeroes [43] so any noise that is

modeled using poles can be approximated with a finite number of zeroes.

3.2 Definitions

The power spectrum of a noise sequence is defined as the Fourier trans-

form of its autocorrelation function [43). The purpose of this chapter
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is to describe techniques for estimating this power spectrum using a finite
sequence of the noise.

A distinction is made between a point and a sample. A point is a
single value obtained from, for example, an A/D converter. A sample is a
number of consecutive points from a discrete time sequence [47]. A sample
may also be referred to as a segment.

The sample autocorrelation function is the autocorrelation of a
sample. The sample power spectrum is the Fourier transform (DFT) of
the sample autocorrelation function. It will be shown that the sample power
spectrum can be calculated using the short-time Fourier transform (DFT) of
the sample. This method of calculating the sample power spectrum is more
efficient. The sample power spectrum is also referred to as a periodogram
[47].

If a windowing function (other than rectangular) is applied to the sam-
ple, the resulting DFT is called a windowed sample power spectrum.
Often the term “windowed” is dropped and the type of window (rectangu-
lar or otherwise) is implied by £he context. The windowed sample power
spectrum is also referred to a modifled periodogram (45].

It turns out that a sample power spectrum is not a good estimate of
the power spectrum [47]. The next section will show the mathematical re-

lationship between the sample, the sample autocorrelation, and the sample
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power spectrum. The following sections will then show a variety of ways to

estimate the power spectrum using sample power spectrums.

3.3 Sample Power Spectrum

The DFT of the sample autocorrelation function of an N point sample,
z(n), is equal to the squared magnitude of the DFT divided by N. The
sample autocorrelation function needs to be interpreted as shown in the
following proof and the sample needs to be padded before performing the
DFT. First, the squared magnitude of the DFT of the sample is solved in

terms of z(n).

_ z(n) n=0,1,...,N -1
””1(")‘{ 0 n=NN+1,...,2N -1 (3.1)
2N -1 .
Xik) = Y zy(n)e ™™ k=0,1,...,2N —1
n=0
N-1 .
Xi(k) = z:m(n)e'"ﬁ"'¢
n=0

Xi(k) = NE-I z(n)cos (%nk) —jNi:I z(n)sin (—;—nk)

n=0

IXu(k)? = [& z(n)cos (;’{,—nk)]z + [33 z(n)sin (%"”)]2

n=0 n=0
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IXRP = TS #(n)cos (%nk) z(m)cos (%mk)
+ Zl z(n)sin (-Ilvnk) z(m)sin (%mk)

1X.(k)? = 3 [:z:(n)cos (%nk) z(m)cos (%mk)
+ z(n)sin (%nk) z(m)sin (%mk) ]

1X1(K)? = - z(n)z(m) [cos (—I%nk) cos (—;—;—mk)

. m A
+ sin (ﬁnk) sin (ka) ]
N-1N-1

X(R)E = Y o cos[Nnk—%mk]

n=0 m=0

2

X (k) = 33 1:c(n):r:(m)cos [%(n - m)k] (3.2)

n=0 m=0

Il

Second, the sample autocorrelation is solved in terms of z(n). Initially,

define the sample autocorrelation as follows [47).

: 0 N
1 N—li—m

r(m)={ N+m 'é) z(n)e(n —m) m=-N+1,...,-1
1 N-1-m

N _—m ,.2;) z(n)z(n+m) m=0,1,...,N -1
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r'(m) is an unbiased estimate of the autocorrelation function and the vari-
ance at a given lag goes to zero as N goes to infinity. A second definition

of the sample autocorrelation will be used in this chapter [47).

0 m=—-N
| N<itm
Wm)={ N "Z;) z(n)e(n —m) m=-N+1,...,-1
1 N-1-m
¥ X z(n)z(n + m) m=0,1,...,N -1

r(m) is biased, but both the bias and the variance of a given lag go to zero
as N goes to infinity so the estimate is still consistent [47].

The motivation for the use of this second definition of the sample auto-
correlation function is that it will make the first statement of this section
true. Nuttall and Carter [46] use the unbiased estimate, r'(m), and discuss
the biases and variances associated with r'(m), r(m), and the resulting
sample power spectrums. They calculate the mathematically efficient r(m)
and use lag weighting to arrive at r'(m). This work is beyond the scope of
this chapter since it is not used in Chapter 4.

Now, p(l) is defined so that the efficient DFT can be used for the cal-

culations.
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r(1) 1=0,1,...,N -1
p(l) = 0 I=N
r(1—2N) I=N+1,...,2N -1

p(l) is even so its DFT is its cosine transform.

l

1 2N-1 2
P(k) = 3 X pll)cos (mlk) k=0,1,...,2N — 1
=0

P(k) = 71,- {Nzl r(I)cos (——lk) 3 1l = 2W)cos (%zk)}

=0 I=N+41

N-1N-1-1
P(k) = —1—1\;{‘ " z(n)z(n + l)cos (-ﬁlk)
=0 ';:0—1 1-N-1
3 z(n)x(n — 1 + 2N)cos 1llc
+I%H§) (n)z(n ~1+2N) (N )}

P(k) = ]—b—{N—lNi—lm(n)m(n+l)cos (zlv"")
N-1-1

+ i z(n)z(n + l)cos (1—7‘;—11«:)}

P(k) = {IE;INZlnm(n)x(n+l)cos<—lk)

+ ,,ZJ) Ng nx(n):v(n + l)cos (le)}
P(k) = {:,Z—; :2_,: :z:(n):c(m cos [ (m — n)k]

N-2 N-1
+ 3, Y z(n)x(m)cos [N( —n)k]}

n=0 m=n+1
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1 (N2 N-2 N-1 -
P(k) = v { 2;0 z’(n) + 2 Zo §:+1 z(n)z(m)cos [ﬁ(m - n)k]}
N-1N-1 x
P(k) = 1—1,— 2_:0 5 z(n)z(m)cos [jv—(n - m)k]

From Equation 3.2,
1
P(k) = F|Xl(k)|’ k=0,1,...,2N — 1. (3.3)

This result proves the statement at the beginning of this section. A
fast autocorrelation could be performed by taking the IFFT of the squared
magnitude of the FFT of the padded sample and dividing by N. The
resulting autocorrelation needs to be interpreted as p(l). Recall that p(l)
is defined so that a standard FFT can be used to reduce computation
time when calculating the autocorrelation. The coefficients of‘ p(l) may
be rearranged or scaled to obtain the autocorrelation definition 6f choice.
Chapter 4 will use the p() definition of the autocorrelation function because

of its computational efficiency.
3.4 Windowed Sample Power Spectrum

All of the mathematics in Section 3.3 still apply if the sample is windowed.

The only difference is that P(k) needs to be normalized for the window (45]
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so that the mean energy of P(k) is not biased. Let z(n) in Equation 3.1
equal s(n)w(n) where s(n) is the N point sample of the noise and w(n) is
the N point window. P(k) in Equation 3.3 now becomes [45]

| X1 (k)

N-1

> wi(m)

m=0

P(k) k=0,1,...,2N ~ 1.

(3.4)

It can be seen that for a rectangular window, Equation 3.4 reduces to

Equation 3.3.

3.5 Sample Power Spectrum Examples

For the following examples, white gaussian noise is passed through an FIR
filter to create non-white noise. Figure 3.1 shows the power response of
the FIR filter versus the normalized frequency. This power response is the
power spectrum of the noise. Figure 3.2 shows the sample power spectrum
for a 1024 point sample. The expected value of the sample power spectrum
does not equal the power spectrum. The expected value of Figure 3.2 is
the rectangular window power response convolved with the power spectrum
[45].

The rectangular window has a rolloff of —6 dB/oct. With more points
in the window, the number of octaves in the normalized frequency domain

increases. Figure 3.3 shows the sample power spectrum for a 16384 point
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Figure 3.1: Power response of the FIR filter.
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Power Specirum (dB)
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Figure 3.2: Sample power spectrum with 1024 points.
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sample. As the number of points in the sample goes to infinity, the expected
value of the sample power spectrum will converge to the power spectrum.
(This can be seen in [47] by letting the number of points go to infinity in
the equation for the expected value of the periodogram.) Unfortunately,
the variance does not go to zero. Therefore, the estimate of the power

spectrum is not consistent [47].

3.5.1 Averaging Periodograms

The variance can be reduced if the sample size is fixed and consecutive
samples are averaged together. This method is called “Averaging Peri-
odograms” (the Bartlett method) [47] [48]. Figure 3.4 shows the 16384
points from Figure 3.3 combined as the average of 16 consecutive 1024
point samples. If the number of samples being averaged goes to infinity,
the variance goes to zero, but the expected value does not converge to the
power spectrum. Instead, the expected value is the same as in Figure 3.2.
For a finite number of points (in this case 16384), selection of the sample
size results in a tradeoff between variance reduction (and potentially poor

sidelobe performance), Figure 3.4, and frequency resolution, Figure 3.3.
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Figure 3.3: Sample power spectrum with 16384 points.
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Figure 3.4: Average power spectrum of 16 consecutive 1024 point samples.
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3.5.2 Averaging of Modified Periodograms

Since a finite window must always be used for short-time analysis, a window
with sidelobes lower than a rectangular window can be chosen. This method
is called “Averaging of Modified Periodograms” (the Welch method) [47]
[45]. Figure 3.5 shows the same 16384 points as in Figure 3.4, but a mini-
mum 3-term window is nsed [44]. Now, the expected value of the average
(windowed) sample power spectrum (Section 3.4) is the convolution of the

power spectrum with the new window [45].

3.6 Spectral Smoothing via Lag Windowing

For a finite number of samples being averaged, the variance is not zero. Fur-
ther variance reduction can be achieved by spectral smoothing. This also
results in a tradeoff between variance reduction and frequency resolution.

Convolution with a filter in the frequency domain can be efficiently com-
puted in the lag domain [46]. The original samples werc padded with zeroes
so the autocorrelation is not aliased. Spectral smoothing is performed using
a lag window.

The window needs to have a non-negative power response [47]. Addi-
tionally, the window needs to be equal to one at zero lag so that the mean

energy of the spectrum is not biased. A triangle window satisfies these
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Figure 3.5: Average power spectrum of 16 consecutive 1024 point windowed
samples.
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criteria [17]. After the IDFT is performed, the following window is applied

to p(1).
C M-l
e 1=0,1,...,M—1
we(l) = | 0 I=M,...2N-M
M+1-2N
-+T—— I=2N - M+1,...,2N —1; M #£1

where M determines the amount of smoothing and ranges from 1 to N.
The smoothed spectrum is then obtained from the DFT of the windowed
lag function.

Figure 3.6 shows a smoothed version of Figure 3.5. The variable M is set
to 32. The variance is clearly reduced, yet the sidelobes of the triangular
lag window distort the intended spectrum. Other lag windows could be
used [41], but another, more effective way of dealing with this problem is

discussed in Section 3.10.

3.7 Non-Stationary Noise

Until now, stationary noise has been assumed. If the power spectrum is
slowly time varying, the assumption can be made that it is stationary for
a short amount of time. This short-time power spectrum can then be esti-
mated from a finite number of samples covering this time period. Choosing

the length of time over which the noise is assumed to be stationary resultsin
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Figure 3.6: Smoothed average power spectrum of 16 consecutive 1024 point
windowed samples.
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a tradeofl between the convergence rate of the non-stationary power spec-
trum estimate and the variance of the estimate. Recall that the variance
can also be traded for frequency resolution by selection of the sample size

(Section 3.5) and the length of the lag window (Section 3.6).

3.8 Practical Implementation

In spectral separation, a single error can cause much damage. For example,
in the algorithm described in Chapter 4, 256 samples are averaged at a
given frequency. If 255 of the frequency samples are 20 dB (100) and only
1 is 60 dB (1000000), the average value is 36 dB. The averaging of the
logarithm of the samples may be a useful method, but the expected value
of the logarithm is not equal to the logarithm of the expected value since
the logarithmic function is not linear. The next section will extend the
method of averaging of modified periodograms to averaging of logarithmic

modified periodograms.

3.9 Averaging of Logarithmic Modified Pe-
riodograms

The following discussion will show that the logarithm of the expected value
of the sample power spectrum, P(k), (Equation 3.4, Section 3.4) is the

expected value of the logarithm of the sample power spectrum plus a con-
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stant. The proof is based on the fact that for time domain gaussian noise,
the power spectrum has a scaled chi-squared density function with two
degrees of freedom [41]. Although the proof is only for gaussian noise, &
discussion is given in Section 4.3.2 that will generalize this proof for other

types of noise.

3.9.1 Sample Power Spectrum Density Function

Any linear transformation of gaussian random variables results in gaussian
random variables [49]. A sample may be windowed from an infinite sequence
of zero mean gaussian noise. Windowing is a linear transformation. The
windowed sample may be padded with zeroes and transformed into the
frequency domain using a DFT. Whether or not padding is done, both
the real and the imaginary parts of the DFT are a weighted sum of the
windowed sample by definition of the DFT. The squared real part is added
to the squared imaginary part to result in the squared magnitude of the
DFT which therefore has a scaled chi-squared density function [50].

Let x be defined as a random variable having a chi-squared density
function with two degrees of freedom. The random variable, y, representing
the sample power spectrum at a given frequency is y = £x, where % is
chosen as the scaling factor so that E[y] = c. The random variable, y, is

described by the following density function [41).
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3.9.2 Logarithmic Averaging Proof

Log Ely] is solved in terms of E[Log y], but first F[Log y] will be solved
in terms of Log Ely]. All logarithms are base e unless otherwise specified.
“log” is the standard multi-valued complex function. “Log” is the principle

value of the “log” function.

Ellog y] = [:(Log y)fy(y)dy

1

= = /M(Log y)e v/ dy
cJo

Let r = e¥/¢ soy = —c logr and dy = ~£dr.
Bllogy] = [ [Tog (~clogr)|r () d
mhogy|l = Py A og (—clogr) |r - ) ar
1
= /0 [Log (c) + Log (— log )] dr
1 1
= [ Log(c)dr+ [ Log (~logr)dr
0 0

Let & = logr, so e = r and e'ds = dr.

0
Ell.ogy] = Logc +[ [Log (—s)] e’ ds
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Let t = - 8,80 —t = s and —dt = ds.
Ellogy] = Logec +/ (Log t) et dt
0

The solution to the definite integral can be found in a standard table of

integrals [51] and is equal to the negative of Euler’s constant, .
Ellogy] = Log Ely] -~

Solving for Log Ely],
Log E[y] = E[Logy]+ 7.

v is equal to .577215664901532860606512. ..[52]. Since a power spectrum

is usually presented in decibels, the constant may be adjusted accordingly.

log Ely] _ FEllogy] , v
Log 10 Log 10 Log 10
lLogyo Ely] = E[Logy,y] + !
Log 10
10y
10L E = F[10Lc s
0810 Lly] [ 0810 Y] + Log 10

Let ¢ = 10y/Log 10 = 2.506815781. .. dB.

10Log,o Ely] = E[10Log,,y] + ¢



3.9.3 Logarithmic Averaging Example 90
3.9.3 Logarithmic Averaging Example

Figure 3.7 shows the same 16384 points as used in Figure 3.5 of Sec-
tion 3.5.2. The only difference is that the logarithmic average is used.
Although the results are similar, any error (as discussed in Section 3.8)
will not cause as much damage. Comparisons of Welch and logarithmic

averaging are made throughout Chapter 4.

3.10 Spectral Smoothing via Cepstral Win-
dowing

This power spectrum estimate can now be smoothed using an IDFT and
a lag window as described in Section 3.6. The result will be similar to
Figure 3.6 and the poor sidelobe perforinance still exists. Instead, the log-
arithm of the power spectrum estimate is inverse transformed. Because of
the logarithmic function in the spectral domain, the lag window is now more
appropriately called a cepstral [53] window. Figure 3.8 uses the triangular

cepstral (lag) window as discussed in Section 3.6.

Since the logarithm is used on the spectrum before smoothing, the cep-
stral window’s power response is essentially convolved with the logarithm
of the spectrum instead of the spectrum resulting in excellent sidelobe re-

duction.  Even if the method of “Averaging of Modified Periodograms”
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Figure 3.7: Logarithmic average power spectrum of 16 consecutive 1024
point windowed samples.
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[Figure 3.8: Smoothed logarithmic average power spectrum of 16 consecutive
1024 point windowed samples.
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(Section 3.5.2) is used prior to smoothing, processing the spectrum with a
logarithm before smoothing would still result in excellent sidelobe reduc-

tion.



Chapter 4

Estimation of Noise
Corrupting Speech Using
Extracted Speech Parameters
and Averaging of Logarithmic
Modified Periodograms

An algorithm is described which provides an estimate of the power spec-
trum of broadband noise corrupting a wideband speech signal [54]. Esti-
mated parameters of the speech signal (voicing confidence and pitch) are
provided by the algorithm in Chapter 2. The noise estimate is derived
using both unvoiced and voiced speech and is shown to provide a better
estimate than using unvoiced speech alone. The method of averaging of log-
arithmic modified periodograms (Secfion 3.9) is used to reduce the effect of
speech components corrupting the noise estimate. Results are provided for

both Welch (Section 3.5.2) and logarithmic averaging so that comparisons

94
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can be made. The results include stationary white noise estimation for only
unvoiced speech, for only voiced speech, and for a combination of both. Ex-
amples are given for stationary non-white noise and non-stationary white

noise using the logarithmic averaging method.

4.1 Introduction

For many speech processing applications [55], [56], [67], it is necessary to
have an estimate of the noise level and spectrum corrupting the speech
signal. Such an estimate may be obtained from a speech plus noise signal
when it is known a priori where non-speech occurs. The assumption is then
made that the noise spectrum does not change during the speech.

To eliminate the need for a priori knowledge of the signal, automated
speech activity detectors have been developed [58], [3], [59]. Preuss [58] uses
a segment based voicing decision. In this method, voiced regions are first
located and eliminated. Then, 250 ms before and 500 ms after a voiced
region have the potential to be low energy or unvoiced speech and are
therefore not used for noise estimation. The remaining signal is assumed to
be noise and is used to update the noise estimate. In conversational speech,
this method may have difficulty tracking changing noise unless considerable
periods of non-speech exist.

Harrison, Lim, and Singer [3] describe the difficulties of detecting speech
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over a range of background noise levels. They employ an adaptive energy
threshold as a speech/no speech detector in a two microphone, noise can-
celling system. Those portions of the signal that are classified as no speech
are used for noise estimation. It was found that errors in the speech/no
speech detector during low energy speech did not cause significant degra-
dation of the noise cancelled speech. In this method, the sampling rate is
10 klz. As a result, the noise spectrum above 5 kllz is not estimated. The
initial estimate of the noise (used for setting thresholds) is determined by
assuming the first second of the signal is only noise.

A method to estimate the noise spectrum by making use of a frequency
domain voicing decision based on the energy below 1 kHz was investigated
by Kang and Fransen [59]. The noise estimate is updated during unvoiced
regions. Although they state that unvoiced speech can corrupt the noise
estimate, they reason that the total duration of the unvoiced speech relative
to silence is such that the corruption is not too adverse. In this method,
the sampling rate is 8 kHz. As a result, noise in the frequency range above
4 kHz is not estimated.

Paliwal [60] estimates the level of additive noise during speech using
a method that is based on the assumption that the noise is white and
that the speech can be modeled as a tenth order autoregressive signal. The

method allows tracking of the noise, even during speech, by mathematically
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separating the two signals based on the properties of the assumed models
of noise and speech.

In a related method, Kasuya et al. [61] estimate inter-harmonic en-
ergy during voiced speech to differentiate between normal and pathological
voices. The speech is modeled as a periodic component and an additive
noise component. The method was applied to sustained vowels, after the
removal of transitional segments, and was found successful for detecting
laryngeal pathologies. While not a method for additive noise estimation,
this previous work is an interesting application of the use of inter-harmonic
voiced energy.

The method presented in this chapter produces a spectral estimate of
additive broadband noise corrupting a wideband speech signal. The method
is antomatic and requires no a priori knowledge of the noise spectrum. The
method uses information regarding the location of speech in the signal.
This information is provided by a separate algorithm (Chapter 2). The
only time constraint imposed on the signal is that it be no shorter than
51.2 ms (one segment). The noise need not be white, stationary, or gaus-
sian. For smoothing of the noise spectrum, the assumption is made that the
noise can be modeled with at most 32 zeroes. This is a parameter that may
be adjusted. The speech need not obey a statistical model. The speech is

assumed, however, to follow basic phoneme spectral and occurrence statis-
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tics reported in the literature.

Section 4.2 describes the parameters extracted from the speech signal
(Chapter 2) used to locate speech components in the spectrum. Section 4.3
examines estimating the noise spectrum from unvoiced speech. The sam-
pling rate is 20 kHz and high frequency fricative energy is included in
the analysis. A method is included to minimize the corrupling effects of
unvoiced speech. Section 4.4 explores the noise information that can be
extracted from the voiced spectrum. In Section 4.5, both unvoiced and
voiced speech are used to estimate the noise spectrum. White noise re-
sults are provided in Section 4.6. In Section 4.7, examples are provided
for stationary non-white noise and non-stationary white noise. Concluding

remarks are made in Section 4.8.

4.2 Extracted Speech Parameters and Power
Spectrum

The entire algorithm for the extraction of the speech parameters is detailed
in Chapter 2. A more detailed analysis of the power spectrum is described
in Chapter 3. This section is a summary of those results for readers who
are interested in only the noise estimation algorithm.

The parameter extraction (Chapter 2) and the noise estimation (this

chapter) have been designed as part of a speech enhancement system (8]
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The added noise is assumed to be broadband. The method is not intended
for impulse or sinusoidal noise.

Two estimated speech parameters are used to identify those frequency
values in the power spectrum of the segment where speech energy exists.
These parameters are the voicing confidence, é,, and the pitch estimate,
Fs. Some factors regarding these parameters are described in the next
paragraphs.

The speech to be analyzed is lowpass filtered with a 6 pole Butter-
worth filter having a cutoff frequency of 8 kHz and sampled with a 10 bit
analog-to-digital converter at a rate of 20 kHz. Gaussian noise, computer
generated to be white to 10 kHz [33], is added to the sampled speech at
the appropriate signal-to-noise ratio (SNR). The SNR is determined as ten
times the common logarithm of the mean square level of speech to the mean
square level of noise.

The speech plus noise is digitally bandpass filtered. The filter is com-
prised of a 6 pole Butterworth highpass filter at 20 Hz and a 6 pole But-
terworth lowpass filter at 600 Hz. The normalized autocorrelation function
(NACF) is calculated for each 51.2 ms, 75 percent overlapped segment. The
voicing confidence, é,, is derived from the largest value and the rms energy
of the NACF in the pitch range (3-20 ms). Therefore, é, reflects the peri-

odicity of the signal and is independent of signal amplitude. ¢, ranges from
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—1 to +1 where negative values specify unvoiced segments and positive val-
ues specify voiced segments. The magnitude indicates the certainty with
which the voicing decision is made. As higher levels of noise are added, the
periodicity of the voiced segments diminishes and ¢, approaches 0. When
the periodicity is absent (&, < 0), it is difficult to determine if the segment
is unvoiced or if it is voiced with much noise. The magnitude does give
some indication of the probability of voicing, but the precise probability
is dependent on the SNR and the voiced-to-unvoiced ratio of the speech.
Whether the segment is actually voiced or not is insignificant since a highly
corrupted voiced segment is very useful in estimating the noise.

The pitch estimate, Fy, specifies where the speech harmonics are located
in the power spectrum. A pitch confidence, &, has been defined (Section
2.2.8) to indicate the probabilistic maximum deviation of the actual pitch,
Fy,, from the estimated pitch. It has been found that this measure is not
particularly useful for the research presented in this chapter. Reasons for
this observation are discussed in Section 4.4.

A 51.2 ms analysis window is chosen based upon é, and Fy (Section 4.3
and Section 4.4). The window is applied to the speech plus noise signal
(before the bandpass filter used in the extraction of ¢, and Fy). The result-
ing 1024 points are padded with 1024 zeroes and the squared magnitude of

the DIT is calculated. The power spectrum of the windowed segment (the
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modified periodogram, P(k)) is determined by dividing the squared magni-
tude of the DFT by the number of points in the window and by the mean
square value of the window [45]. Let s(n) be the 1024 point segment of
the signal padded with 1024 zeroes and let w(n) be the 1024 point window

padded with 1024 zeroes. Therefore,

1 |2047 . 2
ﬁ Z 3(n)w(n)e~12wnk/2048
P(k) = "=°1 e k=0,1,...,2047. (4.1)
—— 3 w?(m)
1024 :L:‘o

See also Section 3.4.

4.3 Noise Estimation using Unvoiced Speech

Techniques for estimating noise during an unvoiced signal (silence and
voiceless speech) have been previously considered [58], [59]. The fri'cative
energy is generally assumed low relative to the corrupting noise (3]. In those
cases when it is not low, the relative occurrence is assumed low enough to
cause minimal distortion of the overall noise estimate [59]. These meth-
ods use band limited speech. The presentation here explores the effects of
unvoiced, wideband speech on the noise estimate and suggests a way to

minimize its effect.
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4.3.1 Averaging of Modified Periodograms

Figure 4.1 is a time domain plot of the utterance "Every salt breeze comes
from the sea” spoken by a female. This utterance was chosen as an example
because of the fricative /s/ and the vowel /i/. Of all the fricatives, /s/
occurs most often [62], [63] and is one of the most intense for English [64].
/ [/ is also very intense, but does not occur as often. /f/ and /8/ occur less
often than /s/ and are also less intense. The vowel /i/ has a high frequency
third formant [65] which nearly overlaps with /s/ [66] and therefore must
be carefully separated from it. Figure 4.2 shows the same utterance with
white noise added to produce a SNR of 6 dB. White noise is used during
the discussion of the algorithm but, as will be seen later, the noise need
not be white. Figure 4.3 is the voicing confidence, é,, resulting from the

corrupted speech (Section 2.2.5).

For unvoiced segments (¢, < 0), a minimum 3-term window [44] is
applied to the segment. The modified periodograms of the present and all

past unvoiced segments are averaged using the Welch method [45], [67].
1
No(k) = 1 3 Pik) (42)
U

where Ny(k) is the power spectrum estimate of the noise at the kth fre-
quency, My is the number of unvoiced segments, and the summation is over

the periodograms of only unvoiced segments. Finally, the noise estimate,
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Figure 4.1: The female time domain utterance “Every salt hreeze comes

from the sea.”
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Figure 4.2: The female time domain utterance “Every salt breeze comes
from the sea” with white noise added (6 dB SNR).
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Figure 4.3: The voicing confidence of the female utterance “Every salt
breeze comes from the sea” with white noise added (6 dB SNR).
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Ny(k), is obtained by smoothing Ny(k).

~

Ny(k)ap = Flw.F ' [Ny(k)as]] (4.3)

where F and F~! are the standard 2048 point DFT and IDFT. Ny(k) in
dB is inverse transformed to the cepstral domain (6], 53] and a triangular
window is applied (Section 3.10). Using the index ! for the independent axis
of the cepstral domain, the 63 point triangular window is equal to one at
| = 0 and equal to zero at | = 32. The window remains equal to zero until
! = 2018 - 32. The triangular window then approaches one as [ approaches,
but does not reach, 2048. This smoothing technique assumes the noise can
be modeled with at most 32 zeroes. (The length of the autocorrelation of
the impulse response of a 32 zero FIR filter is 63 points.) If it is known
that the noise can be modeled with fewer zeroes, a shorter window may be
used to reduce the variance of Ny(k).

The triangular window was chosen so that the smoothed spectral esti-
mate would be non-negative [47]. The smoothing window is applied in the
cepstral domain rather than the lag domain [46] because in the lag domain,
its poor sidelobe level (relative to other windows) causes spectral leakage
which is unacceptable for eslimating a noise spectrum with a large differ-
ence in amplitude for various frequencies. It has been shown (Section 3.10)

that applying the window in the cepstral domain gives better effective side-
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lobe performance since the spectrum of the window is essentially convolved
with the logarithm of the power spectrum instead of the power spectrum.

The upper curve in Figure 4.4 is the error of NU(Ic) versus time. The
square root of the mean square error in dB was shown to be an informative

unit of measure [7].

1
1 2047 2] 2
= {5048 kz:;) (Nu(k)w - NudB) ] (44)

where N,qp is the actual power spectrum of the noise in dB. Since white
noise is used for this example, N, is independent of k. The error for each
segment is plotted at the time corresponding to the center of the window.
(Computation time and storage space may be reduced by transforming
only the 63 non-zero points (and one zero) from the cepstral domain in
Equation 4.3. The summation in Equation 4.4 would then be over only 64

points.)

The actual noise is defined to be the rms energy requested of the noise
generator. For statistical reasons, the exact energy of the noise generated
during the unvoiced segments is rarely equal to the requested rms energy.
This small difference is ignored for simplicity in calculating the error and
does not detract from the discussion which follows.

Since only unvoiced segments are being used, the estimate and therefore

the error (using stationary noise) is held constant over the voiced regions.
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Figure 4.4: The error of the noise estimate of the female utterance “Every
salt breeze comes from the sea” with white noise added (6 dB SNR).
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The noise estimate converges quickly during the non-speech signal at the
beginning of the utterance. At about .5 seconds, the /s/ in “salt” begins
to corrupt the noise estimate. Some correction occurs during the stop
gap at .8 seconds. The /s/ at the end of “breeze” after the voicing has
stopped (about 1.2 sec) and the /s/ in “sea” (about 2 sec) again corrupt
the estimate. Finally, the estimate improves during the .25 seconds of non-

speech at the end of the utterance.
4.3.2 Averaging of Logarithmic Modified Periodograms

The corrupting effect of the fricatives can be reduced. The method of
averaging of modified periodograms has been extended to the method of
averaging of logarithmic modified periodograms in Section 3.9. This sec-
tion shows that those theoretical results have practical advantages over the
Welch method in a number of noise cases.

The error plotted as the upper curve in Figure 4.4 is calculated using
the present and all past unvoiced segments. As an example, assume that for
a given segment, 256 unvoiced present and past segments are used. With
these estimates, the Welch method of averaging of modified periodograms
(Section 3.5.2, [45], [67]) could be employed, but there is a disadvantage
of that method for this application. If 255 of the samples are 20 dB (100)

relative to the quantization level and only 1 is 60 dB (1000000), the av-
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erage value is 36 dB. Similarly, high energy fricatives and doubling errors
(Section 4.4) corrupt the noise estimate.

The averaging of the logarithm of the modified periodograms (windowed
sample power spectrums) may be a useful method, but the expected value
of the logarithm is not equal to the logarithm of the expected value since
the logarithmic function is not linear. However, for gaussian noise, the
power spectrum has a scaled chi-squared density function with two de-
grees of freedom [41]. (P(k) at k = 0 and at k = 1024 has a scaled
chi-squared density function with one degree of freedom. Using the ap-
proximation of two degrees of freedom is not significant to this algorithm.)
It can be shown (Section 3.9.2) that the natural logarithm of the expected
value is the expected value of the natural logarithm plus Euler’s constant
(v = 0.57721566...). When adjusted for ten times the common logarithm
(decibel) the constant becornes ¢ = 2.506815781... Therefore, the average of
the individual power spectrums in dB plus ¢ results in an accurate estimate

of the power spectrum.

Ny(k)as = (X;; Z Pi(k)dﬂ) + ¢ (4.5)

Compare Equation 4.5 to Equation 4.2. Using Equation 4.3, Ivu(k)da is
obtained by smoothing Ny(k)4s.

If the noise is not time domain gaussian, this method may still prove use-
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ful. The central limit theorem states that for independent samples (white
noise), a weighted average (properly normalized) of random variables from
any density function will approach a normal distribution as more samples
are used [68]. Since windowing and Fourier transforming causes a weighted
averaging of 1024 time domain samples, the real and imaginary parts of
the transform can be approximated by a gaussian distribution (see Section
3.9.1) and the method will work for white noise. Logarithmic averaging
has been tested with white, uniform noise with results similar to white,
gaussian noise.

If the noise is not white but can be modeled as white noise that has
passed through a linear filter, this method may again be used. This is due
to the fact that a linear filter can be described by an all zero model using an
infinite number of zeroes to model any pole. The output at any sample is
a weighted average of the independent input samples and the central limit
theorem shows that the output samples approach a gaussian distribution
[49]. Therefore, the less white the noise becomes because of more zeroes
in the noise model, the more gaussian the output becomes. Whether or
not logarithmic averaging will prove to be an improvement over the Welch
method will depend on the application.

The lower curve in Figure 4.4 represents the error of Ny(k) versus time

for the logarithmic averaging method. The noise estimate converges more
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quickly at the beginning than the Welch averaging method. At .5 seconds,
the /s/ still corrupts the estimate, but not nearly as much. The relative
improvement with regard to the second /s/ (at about 2 sec) and the conver-
gence rate during the last .25 seconds is not as noticeable, yet the absolute
error at the end of the utterance is nearly one-half.

As the SNR increases, the reduction of the fricative’s adverse effect on
the noise estimate becomes more pronounced. As the SNR is decreased to
about —6 dB, the difference between the two averaging methods becomes
less significant and the increase in computation time for the new method
may not be warranted. The difference is also less pronounced as more past
samples are used and there is little difference for speakers that produce
quiet fricatives.

At the end of the utterance, all 97 unvoiced segments are used to esti-
mate the noise spectrum (Figure 4.5). The white noise added to the signal
has an rms level of 24.88 dB. It can be seen that most of the error occurs at
the .higher frequencies. This is because of the high frequency [ricative /8/.
For band limited speech, the noise spectrum can effectively be estimated
using only unvoiced speech [59]. For full bandwidth speech, voiced speech

should also be considered.
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Figure 4.5: Noise spectrum estimate at the end of the utterance using only
unvoiced speech (6 dB SNR).
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4.4 Noise Estimation using Voiced Speech

In this section, only voiced segments will be used to estimate the noise.
The author is aware of only one previous method that has been used to
estimate addilive non-white noise corrupting running speech using only
voiced speech [7]. Because of the relatively slow convergence, this method
requires an a priori estimate of the noise or at least some time at the
beginning of the signal on which to converge. Similar techniques of using
inter-harmonic energy [61] and comb filtering [4] have been used for different
applications.

For voiced segments (&, > 0), the chosen window is based on the pitch
estimate, Fy. For high frequency pitch, the harmonics are separated and the
energy is concentrated primarily at the few harmonics in the first formant
frequency region. For low frequency pitch, the harmonics are more closely
spaced and most of the energy is distributed among many harmonics in the
first formant region. Therefore, a minimum 3-term window [44] is chosen
when Fy > 175 Hz and a Hamming window is chosen when Fy < 175 Hs.
In this way the high energy harmonics of high frequency pitch have extra
sidelobe reduction and the low frequency pitch harmonics have a narrower
bandwidth so that inter-harmonic spectral space is assured to exist.

Since the segment is voiced, 0 < é, < 1. As described in Section 4.2, ¢,
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indicates a level of periodicity. Through experimentation with white noise,
it was found that for low levels of periodicity (due to high noise levels), all
but the first formant region were corrupted by noise and could therefore be
used for noise estimation. As the periodicity (measured by é,) increased, the
second and then third formant emerged out of the noise and the associated
regions could not be used for direct noise estimation. Even for high levels of
periodicity, no significant amount of speech energy was found above 6000
Hz. (Voiced fricatives have high frequency energy during voiced speech.
This is not a significant factor because voiced fricatives occur relatively
infrequently [62], the particular speaker often does not produce a strong
fricative component, and the voicing component significantly reduces the
air low as compared to the corresponding fricative [69].)

Based on the results of experimentation, the voiced spectrum is divided
into two regions. Recalling that P(k) is an even function, only the first
1025 points (0 to 1024) are described while the remaining 1023 points are
found by reflecting the spectrum about the point 1024. The two regions
are defined as

Region 1: 0 — nint[614.4¢,)
Region 2: nint[614.4¢,] — 1024,

where “nint” means nearest integer. In terms of real frequency, the regions

are
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Region 1: OkHz — 6é,kHz
Region 2: 6é,kHz — 10kHz.

In the first region, valid noise estimates are found between the pitch har-
monics [61]. The pitch specifies the center frequency for each harmonic.
The bandwidth of the harmonic is determined by the chosen window and
remains constant for each harmonic. Because of the pitch range (50 to
333 Hz) and the chosen window, the pitch harmonics are never too closely
spaced and inter-harmonic spectral energy is assured to exist. All of the
points in the second region are considered to be valid noise estimates.

Some initial work [7] motivated research to find a probabilistic maximum
deviation of the actual pitch, Fy,, from the estimated pitch, Fy, defined as
the pitch confidence, & (Section 2.2.8). The bandwidths of the harmonics
would then be widened to accommodate the possible errors. This measure
was not found to be useful in the present research for the following reasons.
First, if the predicted deviation was the true deviation for an estimate, it
is not known whether the error is positive or negative so that one-half of
the discarded inter-harmonic noise samples are actually valid. Second, the
typical deviation is about one third of the predicted maximum deviation.
Again, many valid noise samples are discarded. Third, intra-segment pitch
variations cause the higher harmonics to become skewed rendering the pitch

confidence less than useful for the higher frequencies. (The wide 51.2 ms
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window is required for spectral resolution.) Fourth, if the pitch deviation
is caused by high levels of noise in the first formant region, under white
noise conditions, the level is high enough in the second and third formant
regions so that the speech has little eflect on the noise estimate because the
second and third formants are lower in amplitude than the first formant.
Without the pitch confidence measure, pitch errors will occur that will not
be directly compensated for, but when averaged with the many valid sam-
ples (especially using logarithmic averaging), the resulting noise estimate
was found to be consistently better.

Figure 4.6 shows the number of estimates available at each frequency
for all of the voiced segments at the end of the utterance. The utterance

and SNR are the same as in Figure 4.2 and Figure 4.5.

The noise estimate is found by averaging all available estimates for each
frequency, k. Since some frequencies have few or no estimates to average,
interpolation must be performed. For any frequency that has less than 16
(or the number of segments available, whichever is less) estimates, nearby
frequency estimates are added to the averaging. If the number of estimates
available at the next highest frequency, k + 1, plus the number of estimates
al the present frequency, k, is greater than or equal to 16, all of these
estimates are used. If 16 has not been reached, the next lowest frequency,

k — 1, is added to the averaging. If 16 has not yet been reached, the next
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Figure 4.6: Number of estimates available from voiced speech at the end of
the utterance (6 dB SNR).
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highest frequency, k + 2, is added to the averaging. This process continues,
right then left, until at least 16 estimates are averaged.

After interpolation, the entire noise spectrum, Ny (k), is smoothed using
the method described in Section 4.3.1 and Ny (k) results. Figure 4.7 shows
the error of Ny (k) versus time. The error remains constant throughout the
unvoiced segments. Since voiced segments are not available at time zero,
the first noise estimate is made at about .3 seconds.

If the pitch extraction algorithm makes a gross error (lp%f—“-' > .2),itis
likely to be a doubling error (Section 2.2.6). Such an error will cause every
other harmonic to be treated as noise and will degrade the noise estimate
in Region 1. Doubling errors are more likely to occur when the level of low
frequency noise increases and corrupts the low harmonics. This corruption
might not be a serious ;;roblem for the low frequency noise estimate, but if
the noise level for higher frequencies is lower than the low frequency noise,
the noise estimate can be degraded. This problem occurs more often for
low pitch speakers.

The voiced estimate can be degraded by doubling errors, by inter-
harmonic speech energy, by high frequency voiced energy, and by sidelobe
energy. To reduce these eflects, logarithmic averaging can be used. The
result is shown in Figure 4.7.

Figure 4.8 shows the noise estimate at the end of the utterance. Most
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Figure 4.7: The error of the noise estimate versus time using only voiced
speech (6 dB SNR).
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of the error is caused by the inter-harmonic speech energy that exists in
the first three formant frequency regions. This low frequency error is in
contrast to the high frequency error that occurs when only unvoiced speech
is used (Figure 4.5). As a result, these two methods can be combined to

produce a better overall noise spectral estimate.

4.5 Noise Estimation using both Voiced and
Unvoiced Speech

The noise estimate derived from only unvoiced segments can exhibit high
frequency error due to fricatives. If derived from voiced segments, the esti-
mate can be corrupted by low frequency speech. An improved estimate can
be obtained by using the low frequency spectrum of the unvoiced estimate
and the high frequency spectrum of the voiced estimate.

Determination of the frequency at which to convert from the u;l;oiced
estimate of the noise to the voiced estimate is based on typical [requency
regions of voiced and unvoiced speech. The vowel /i/ for female speech has
the highest average third formant (3310 Hz) of all voiced speech (excluding
children) [65] and the bandwidth is about 171 Hz [70]. Using this data, the
highest vowel frequency is 3396 Hz and is 27 dB below the first formant
amplitude [65]. A strong /s/ can be as intense as the first formant and

is 30 dB below its maximum at about 3500 Hz [66]. This may suggest an
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Figure 4.8: Noise spectrum estimate at the end of the utterance using only
voiced speech (6 dB SNR).
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appropriate transitional frequency of 3400 to 3500 Hz, but quite often /s/
is not as intense as voiced sounds nor does it occur as often. Therefore,

3000 to 6000 Hz is chosen as a transitional region.

Ny(k) k=0,1,...,307
N(k)={ %38Ny (k) + &4ENy(k) k= 308,...,614 (4.6)
Ny (k) k = 615,...,1024

where N(k) is the spectral estimate before smoothing.

Although this produces a good estimate at the end of the utterance,
there are some side effects that are not immediately apparent. For example,
if only one segment is available, as it would be at the beginning of an
utterance, the entire spectrum must be estimated whether the segment is
unvoiced or voiced. As another example, assume the first few segments
are unvoiced and one voiced segment is received. The high frequencies of
the voiced estimate might not be a better estimate than the many unvoiced
segments already available because the estimate based on one segment has a
large variance. This can cause the error at the transition between unvoiced
and voiced speech to suddenly increase.

To reduce these side effects, the final noise estimate is calculated using

the following algorithm instead of Equation 4.6.
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m = 16
d = min|m, My + My]
w = min[m, My]/d
for k =0 to 307
N(k) = wNy(k) + (1 — w)Nu(k)
next k
for £k =308 to 614
2 = (k — 308)/306
w = (z min{m, My} + (1 — z) min{m— min[m, My], Mv])/d
N(k) = wNy(k) + (1 — w)Ny(k)
next k
w = min[m, My]/d
for k =615 to 1024
N(k) = why(k) + (L - )Ny (k)

next k

My is the number of unvoiced segments available and My is the number
of voiced segments available. The algorithm can be considered as favoring
the unvoiced estimate in the low frequency range and favoring the voiced
estimate in the high frequency range. If at least 16 unvoiced and at least

16 voiced segments are available, the algorithm reduces to Equation 4.6.
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The final noise estimate, N(k), is obtained by smoothing N(k) using the
method described in Section 4.3.1.

Figure 4.9 shows the error of N(k) versus time for the estimate based on
the present and all past segments. The upper curve is produced using the
Welch method and the lower curve is produced using logarithmic averaging.
Both methods of averaging are superior to the corresponding method based
on unvoiced or voiced segments alone (Figure 4.4 and Figure 4.7).

Figure 4.10 shows the noise estimate at the end of the utterance. It can
be seen that the high frequency error in Figure 4.5 and the low frequency

error in Figure 4.8 has been reduced for both averaging methods.

4.6 Results for Stationary White Noise

Six variations of the algorithm were run on each of 30 utterances for seven
SNRs. The variations include using only unvoiced speech, only voiced
speech, and both unvoiced and voiced speech for the Welch and logarith-
mic averaging methods. A noise estimate is obtained at the end of each
utterance and a table of errors is given for each variation.

The database is comprised of 6 speakers, 3 male and 3 female, each
speaking 5 sentences. Each utterance consists of the sentence and approx-
imately .25 seconds of silence before and after the sentence. This amount

of silence (about 25 percent of the total utterance time) was chosen to be
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Figure 4.9: The error of the noise estimate versus time using both unvoiced
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Figure 4.10: Noise spectrum estimate at the end of the utterance using
both unvoiced and voiced speech (6 dB SNR).
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typical of conversational speech. (The mean square level of speech, used
in the SNR calculation, does not include the surrounding silence.) A more
complete description of the database is available [22].

The error is calculated over four frequency ranges at each SNR. N(j,k)
is the power spectrum estimate of the noise of the jth utterance at the kth
frequency. Here, a 2048 point DFT is used after the 63 point triangular
cepstral window. N,(j) is the actual power spectrum of the noise of the
jth utterance. For all of the tables, white noise is added to the utterances
so the actual noise is independent of frequency. Ey, E;, E3, and E, are the

four error measures used in each table.

1
2

307
. 2
0 1kHz: Ey = ——ngz(N(J,k)aB— No(j)as)
L
<1
3 3 (WG - Maim)’|
1 6kllz: F, = N(j,k)a — Nol7)an
m 307;.303 |
.l
1 1924 1
6 — 10 kHz: E3: }_, ) N(Jak)dB—N(J)dB
410
k=615 J
0 kHz: E L3 1 2i(w( k)ap — Na(5) )d
— 10kHz: a= | = — J,®)dB — J)dB
30 77 2048 (5 |

E, is defined so that it is equivalent to Equation 4.4 in Section 4.3.1.

Table 4.1 shows the results of the algorithm using only unvoiced speech
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Error Error Error Error
SNR | 0-3 kHz | 3-6 kHz | 6-10 kHz | 0-10 kHz
(dB) (dB) (dB) (dB) (dB)

18 | 2.460 3.978 3.941 3.574
12| 1.028 2.059 2.180 1.868
6| 0.404 0.913 1.012 0.842

0] 0.257 0.359 0.408 0.354
-6 0.234 0.189 0.200 0.208
—12 | 0.210 0.142 0.150 0.168
—oo | 0.114 0.114 0.111 0.113

Table 4.1: Noise Estimation Error Using only Unvoiced Speech and the
Welch Averaging Method

and the Welch method of averaging. Although this method of estimat-
ing noise is not original, these results for wideband speech are useful for
comparison.

The first observation is that higher frequencies have a greater error than
lower frequencies for SNRs at 0 dB and above. This is consistent with the
discussion in Section 4.3. High frequency fricatives corrupt the noise esti-
mate. For SNRs below 0 dB, the error is similar for all frequency ranges
because the noise sufficiently corrupts the .fricative sound. For some speak-
ers with stronger than average fricative sounds, the friction still corrupts
the noise estimate at SNRs below 0 dB.

The second observation is that the results improve as the SNR is de-
creased. As the noise is increased relative to the speech, the noise spectrum

becomes less corrupted by the speech and is easier to estimate.
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The error at —oo dB is not zero. Although there is no speech, the voic-
ing decision occasionally misclassifies a segment so that the noise estimation
algorithm proceeds on false data. For the error to be zero, the voicing de-
cision wonld need to be correct (always unvoiced). The actual noise would
need to be defined as the average power spectrum of the output by the noise
generator over the corresponding overlapped segments smoothed by a 63
point triangular cepstral window and the averaging method would depend
on the method used in the algorithm (Welch or logarithmic). These defini-
tions of the noise seem cumbersome and artificial. Consequently, defining
the actual noise as the rms level requested of the white noise generator
causes non-zero errors at —oo dB even if the voicing decision is always
correct.

Table 4.2 shows the results of the algorithm using only unvoiced speech,
but now logarithmic averaging is used. The noise is gaussian. Compared
with Table 4.1, the results have consistently improved for SNRs above —12
dB. For —12 and ~oo dB, the results are generally the same for the two
methods.

Table 4.3 shows the results of the algorithm using only those segments
which are classified as voiced. The Welch method of averaging is employed.
Lower frequencies have a greater error than higher frequencies for all SNRs.

This is due to voiced speech which is more intense at lower frequencies.
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Error Error Error Error

SNR | 0-3 kHz | 3-6 kHz | 6-10 kHz | 0-10 kHz
(B)| (4B) | (dB) | (dB) | (dB)
18| 1.176 1.651 1.426 1.430
12| 0.565 0.963 0.874 0.824
61 0.302 0.521 0.502 0.458
0! 0.242 0.274 0.295 0.274
-6 | 0.228 0.182 0.198 0.203
—12 | 0.212 0.151 0.160 0.175
—-oo | 0.127 0.121 0.128 0.125

Error Error Error Error

SNR [ 0-3 kHz | 3-6 kHz | 6-10 kHz | 0-10 kHz
(dB) (dB) (dB) (dB) (dB)
18 | 9.025 4.023 0.910 5.442
12| 5.071 1.961 0.336 2.985
6| 2.348 0.772 0.198 1.359
0| 0.885 0.301 0.147 0.520
-6 0.315 0.182 0.149 0.220
—12 | 0.266 0.206 0.179 0.216
—oo | 1.416 1.270 1.058 1.238

131

Table 4.2: Noise Estimation Error Using only Unvoiced Speech and the
Logarithmic Averaging Method

Table 4.3: Noise Estimation Error Using only Voiced Speech and the Welch
Averaging Method
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Error Error Error Error
SNR | 0-3 klIz | 3-6 kHz | 6-10 kHz | 0-10 kHz
(dB) (dB) (dB) (dB) (dB)

18| 5.915 2.595 0.396 3.545
12 | 3.327 1.381 0.224 1.977
6| 1.617 0.629 0.178 0.956

0| 0.703 0.315 0.166 0.435
-6 0.333 0.200 0.166 0.237
-12{ 0.281 0.196 0.197 0.225
—oo | 0.711 0.603 0.614 0.641

Table 4.4: Noise Estimation Error Using only Voiced Speech and the Log-
arithmic Averaging Method

The results improve as the SNR is decreased which was the case for
unvoiced speech. The one exception is at —oo dB. Although there are
no voiced segments, the voicing decision algorithm does make occasional
mistakes. The increase in error is due to a large variance because of few
segments and due to incorrectly treating unvoiced segments as voiced.

The results of the logarithmic averaging method applied to voiced speech
are shown in Table 4.4. Compared with Table 4.3, high SNR errors have
been reduced considerably while lower SNR errors are similar. The increase
in error at —oo dB is also exhibited here.

For either method of averaging, noise estimation is generally corrupted
at high frequencies for unvoiced speech and at low frequencies for voiced
speech. Table 4.5 shows the results for the combined method with Welch

averaging. As described earlier, for the combined method the 0 — 3 kHz
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Error Error Error Error
SNR | 0-3 kHz | 3-6 kHz | 6-10 kHz | 0-10 kHz
(dB) (dB) (dB) (dB) (dB)

18 | 2.438 3.013 0.888 2.194
12| 1.015 1.435 0.328 0.984
6| 0.398 0.598 0.198 0.413

0 0.256 0.242 0.148 0.214
-6 0.234 0.148 0.149 0.178
-12 | 0.209 0.147 0.179 0.180
—oo | 0.115 0.180 0.234 0.189

Table 4.5: Noise Estimation Error Using both Unvoiced and Voiced Speech
and the Welch Averaging Method

range is derived from the unvoiced speech, the 6 — 10 kHz range is de-
rived from the voiced speech, and the 3 — 6 kHz range is derived from a

combination of both unvoiced and voiced speech (Section 4.5).

Comparing Table 4.5 to Table 4.1 and Table 4.3, the results have gen-
erally improved for all frequency ranges and all SNRs. Even though the
0 — 3 kllz range is derived from the unvoiced speech, the error has been
reduced because smoothing has increased the error for the unvoiced esti-
mate (Table 4.1) due to the large error in the 3 — 6 kHz range. Since the
error in the 3 — 6 kHz range has been reduced (Table 4.5), smoothing does
not degrade the low frequency estimate as much as in Table 4.1. A similar
argument is true for the 6 — 10 kHz range and the voiced estimate of the
noise (Table 4.3). The increase in error due to the voiced estimate at —oo

dB for 3 — 10 kHz is apparent.
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Error Error Error Error
SNR | 0-3 kHz | 3-6 kHz | 6-10 kHz | 0-10 kHz
(dB) (dB) (dB) (dB) (dB)

181 1.170 1.449 0.372 1.372
12| 0.561 0.778 0.216 0.542
6 0.300 0.398 0.176 0.295

0 0.242 0.219 0.166 0.207
-6 | 0.228 0.152 0.167 0.183
—-12 | 0.212 0.146 0.197 0.188
—oo | 0.127 0.149 0.194 0.163

Table 4.6: Noise Estimation Error Using both Unvoiced and Vonced Speech
and the Logarithmic Averaging Method

The results of logarithmic averaging applied to the combined method
are shown in Table 4.6. Compared with Table 4.5, the results have clearly
improved for high SNRs. For low SNRs, the results are generally the same
for the two averaging methods.

In the data used to create Table 4.5 and Table 4.6, an average of about
25 percent of each utterance is silence. The amount of silence will only
affect the low frequency results. As the number of non-speech segments
are increased, the results will improve for the low {requencies. The high
frequency results are dependent only on the voiced segments. If more voiced

segments are added, the high frequency results will improve.
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4.7 Stationary Non-White and Non-Stationary
White Noise Examples

For all of the examples in this section, the noise is gaussian and logarithmic
averaging is used with the combined method (unvoiced and voiced).

Several tests of the noise estimation algorithm have been conducted for
non-white noise. As an example, consider Figure 4.11 which shows the
power spectrum for a typical test case. This noise is generated by passing
white gaussian noise with zero mean and unit variance through an FIR
filter of length 16 [71] which is less than the maximum of 32 assumed by
the smoothing algorithm (Section 4.3). To simplify calculations, the actual
noise spectrum is defined to be the filter response. The low frequency noise
level is equivalent to —6 dB of white noise and the high frequency noise
level has been reduced to 12.88 dB which is equivalent to 18 dB of white
noise. This noise was added to the utterance used to generate the results
shown in Figure 4.1 through Figure 4.10.

The power spectrum estimate at the end of the utterance is also shown
in Figure 4.11. The estimate is about 1 dB greater than the actual power
spectrum in the high frequency range. This is due to the fact that for voiced
segments the algorithm considers all the energy above 6 kllz to be noise.

The low level high frequency noise in this example is easily corrupted by
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Figure 4.11: Actual and estimated power spectrum of non-white noise.
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the speech energy in that range.

In previous sections of this chapter, results and examples are provided
for single sentence utterances. In practice, the algorithm is intended to be
used for continuous speech. To illustrate how the algorithm will perform
for continuous speech, 5 utterances for a male speaker were concatenated
to form one long utterance. The male speaker, selected for illustrative
purposes, had typical results. The 5 sentences are “We were away a year
ago,” “Every salt breeze comes from the sea,” “Never kill a snake,” “Veils

" and “Bread and butter.” The time domain plot is shown in

of aversion,’
Figure 1.12.

In all previous examples, the present and all past segments are used.
This method produces the best results for stationary noise. To address
non-stationary noise, the assumption is made that the noise is stationary
over a finite number of finite number of segments (finite unit of time).
The algorithm is then modified to estimate the noise based on the present
and» past segments up to 16, 64, or 256 segments total. Figure 4.13 shows
the error versus time for these three algorithm variations at an SNR of 0
dB (white noise). The lowest curve results from averaging the past 256
segments. In this case, the algorithm begins to discard past segments after
3.2 seconds. The middle curve results from averaging the past 61 segments

and begins to discard segments after .8 seconds. The upper curve results
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from averaging the past 16 segments and begins to discard segments after

only .2 seconds.

An algorithm making use of an increased number of past segments pro-
duces a smaller error for stationary noise because the variance at each
frequency is reduced. Such an algorithm will be unable to track a changing
noise spectrum as rapidly as one that uses fewer past segments. Figure 4.14
shows the error versus time starting at an SNR of 0 dB. At 4.2 seconds into
the utterance, the noise is increased 12 dB resulting in a SNR of —12 dB.
The algorithm using 16 past segments quickly tracks the sudden change
while the algorithm using 256 past segments requires more time té adjust.
The time 4.2 seconds was chosen so that the algorithm would have to adjust
during speech activity.

The error is greater for a sudden change in noise than it is at time zero
where the three algorithms use all available segments up to the predeter-

mined maximum for that algorithm. However, for a sudden change in noise

level, each algorithm uses past segments that are now invalid.
4.8 Conclusions

A power spectrum estimation algorithm has been described. The algorithm
estimates the spectrum of noise corrupting a speech signal. The estimation

is performed in the presence of the speech signal and makes use of the voic-
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rithmic averaging method applied to the long utterance at an SNR of 0
dB.
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ing confidence and pitch which are extracted from the speech plus noise
signal. Both unvoiced and voiced speech are used to estimate the noise.
This has been found to produce a better broadband estimate of noise cor-
rupting wideband speech than using unvoiced speech alone. Although both
types of speech are used, the algorithm is still capable of estimating the
noise if only voiced or only unvoiced speech exists.

A logarithmic spectral averaging method has been introduced. This
method reduces the effect of speech components corrupting the noise esti-
mate. For noise other than gaussian, this method is an approximation so
results have been included for the typical Welch spectral averaging method.

Several parameters in the algorithm may be varied depending upon the
particular situation for which the estimated noise is to be used. It has been
illustrated that the number of past segments can be reduced to increase
tracking time but at the expense of increased variance of the estimated
noise spectrum. The length of the cepstral window may be increased to
ingrease frequency resolution or it may be decreased if the noise is known
to be nearly white so that the variance of the spectral estimate is decreased.
Obviously, there are many tradeoffs in the choice of parameters which can

be selected as appropriate to a given situation.



Chapter 5

Summary and Comments for
Future Research

This dissertation has presented two new algorithms (Chapters 2 and 4) and
a new spectral averaging method (Chapter 3) which have been shown to
be useful for the extraction of parameters from a noise corrupted speech
signal. The first algorithm makes a voicing decision and produces an esti-
mate of the fundamental frequency (pitch) of speech. Chapter 2 introduces,
defines, and develops a confidence measure for each of these parameters.
The parameters and confidence measures are extracted and smoothed un-
der the consideration of high levels of noise. The second algorithm produces
a spectral estimate of the noise which is corrupting the speech signal. The
spectral estimate makes use of the new spectral averaging method designed
to reduce the effects of the speech components corrupting the noise esti-

mate.

143
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Unvoiced-to-voiced (U/V) errors remain below a few percent for SNRs
down to —18 dB and are reasoned to remain low for even lower SNRs. V/U
errors remain below a few percent down to —6 dB, below 20 percent at —12
dB and increase above 50 percent below —18 dB. The pitch (gross) errors
are below a few percent down to —12 dB and below 30 percent at —18 dB.

Comparison to previous work is difficult since little quantitative evalu-
ation has been made for pitch determination and voicing decision in cases
where speech is corrupted by high levels of additive noise. One paper [22]
gives quantitative results for a wide range of SNRs and was found to be
comparable to other work for SNRs above 0 dB. Comparing the results of
the algorithm in Chapter 2 to the results in [22], the pitch (gross) errors are
Jess than one-half for all SNRs considered. The voicing decision is clearly
superior for hoth V/U and U/V errors for all SNRs except for V/U errors
at —18 dB. Because of the different methods used in the two algorithms,
the V/U errors in very high levels of noise approach 100 percent for the
algorithm in Chapter 2 while the errors in [22] remain around 50 percent.

The voicing confidence measure is found to be successful for indicating
the probabilistic accuracy of the voicing decision. The exact probability
is dependent on the SNR and the voiced-to-unvoiced ratio of the speech
material. Without this information, the voicing confidence can only be

used qualitatively. The pitch confidence measure was also found success-
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ful, in this case for determining a probable limit on the deviation of the
actual pitch from the estimated pitch. Since botil of these measures have
been introduced in this dissertation, comparison to previous methods is not
possible.

Previous work in spectral estimation of noise which is corrupting a
speech signal has been referenced throughout Chapter 4. Nearly all of
this work has concentrated on speech which is band limited to about 3500
Hz. The results of the popular technique of estimation using only unvoiced
speech is included for comparison. It was found that for wideband speech,
high frequency fricative energy significantly corrupts the noise estimate
above 3500 Hz.

One previous method [7] estimates the noise using only voiced speech
and two other methods [3], [60] can estimate noise during voiced speech
under a number of restrictions. Chapter 4 has explored the corrupting effect
of the energy from voiced speech on the noise estimate. This corruption
was found to be significant for low frequencies.

Using a specially designed technique introduced in Chapter 4, the final
noise estimate is comprised of the relatively uncorrupted low frequency esti-
mate of the unvoiced speech and the relatively uncorrupted high frequency
estimate of the voiced speech. When only voiced or only unvoiced speech

is available, the regional corrupting effects still exist. Whether both parts
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of speech are available or not, the speech, to a greater or lesser degree,
corrupts the noise estimate.

To reduce the speech components corrupting the noise estimate, a new
spectral averaging method has been introduced. This method has been
found successful for significantly reducing the noise estimation corruption
for SNRs above 0 dB. The method works well for broadband noise which
need not be white, stationary, or gaussian.

These two algorithms are fundamental concepts of the speech enhance-
ment system outlined in Chapter 1. The two remaining blocks in Figure
1.1, “formant estimation” and “speech processing,” are presently being re-
searched by the speech and signal processing group at Marquette University.

T. V. Sreenivas [10], [11], [12] is completing a formant estimation algo-
rithm which provides estimates of the first three formants and associated
confidences. The algorithm uses the voicing decision produced by the algo-
rithm described in Chapter 2 of this dissertation. The formant estimator
presently does not use the noise estimate outlined in Chapter 4 so the as-
sumption of white noise must be made. The pitch estimate, which is also
available to the formant estimator (Figure 1.1), is not used either. Fur-
ther research could be done on the formant estimator to include the noise
estimate and to perform pitch synchronous analysis [6}.

R. J. Conway [8], [9] is presently working on the “speech processing”
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block in Figure 1.1. His most resent work uses all of the information avail-
able to him. This includes the original speech plus noise signal, the pitch
estimate, the pitch confidence, the voicing decision, the voicing confidence,
the noise estimate, and the formant estimates with their associated confi-
dences.

Future research in speech intelligibility enhancement could include spec-
tral subtraction techniques improved by the use of extracted speech param-
eters. Let s be the speech signal, n be the additive noise signal, S and N
be the Fourier transforms of s and n, and let " signify an estimate of one of
the variables at a point in time. s and n are functions of time while S and
N are functions of time and frequency. s can be approximated by passing
s + n through one of the following time varying filters.

4 _(SEN) - N

(S+N)
- St
(S+N)

. (S¥N)-N
H3:’—'-—.———A—‘
S;+N

f{,;': ASf =
Sf+N

The estimate (S:—\N) may be obtained by applying the spectral estimation
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techniques discussed in Chapter 3 to the s + n signal. Sy is an estimate of
the speech spectrum constructed from estimated formant data (for example,
see [7]).

Filtering s + n using I1, is the standard spectral subtraction technique
[57]. It is conceivable that more intelligible speech could result from a
more sophisticated filtering operation using an estimate of the speech spec-
trum which would be based on information important to the intelligibility
of speech. Such an estimate, 5’,, could be used in similar filtering tech-
niques resulting in H,, H,, and H,. Since these techniques have not been
researched, it is difficult to determine what advantage one might offer over

another.
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